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The possibility of the formation of first- and second-order phase aberrations with the 
help of a continuous elastic mirror, controlled by a system of concentrated load along its 
contour, is analyzed. The response functions of the mirror actuators and the base control 
modes are calculated using the theory of thin plates. Significant attention is devoted to 
determining the accuracy with which the lowest-order phase aberrations are reproduced 
by the mirror. The computational results are in good agreement with the experimental 
data obtained on an operating model of the mirror with electromagnetic actuators. 

 
 

On atmospheric paths the lowest-order 
aberrations of the wavefront predominate in the 
nonlinear distortions of light beams. In Ref. 1 it is 
shown that aberrations of up to third order make the 
main contribution to the phase distortions of a beam 
propagating under conditions of wind refraction. The 
lowest-order aberrations can be efficiently 
compensated by using simple phase correctors with 
modal control at a small number ( 10) of coordinates. 
Thus the possibility of suppressing the thermal 
self-action of a beam under conditions of wind 
refraction with the help of an adaptive mirror with 
three modal-control channels was examined in Ref. 2. 

Modal control of the phase of a beam requires 
correctors with a nonlocal response function. 
Examples of such correctors are continuous elastic 
mirrors with fast actuators, fabricated in the form of 
piezoelectric stacks3 and mirrors with discrete4 and 
continuous5 bimorph actuators. However such 
correctors have a low sensitivity (of the order of 
10–2 m/V) and a relatively small dynamic range, 
which restricts their use to visible radiation. In the 
infrared region compensation of nonlinear distortions 
requires controllable mirrors with a range of 
displacement of the reflecting surface of up to 100 m. 
Such correctors are also of interest in laser technology 
for controlling beam position and size. 

A modal corrector for controlling aberrations of 
up to third order inclusively can be built using flexible 
elastic mirrors which are deformed by loads applied 
along their contour. In this case the range of control 
can be significantly expanded by using 
electromechanical actuators to form the loads. In spite 
of the fact that such mirrors operate more slowly they 
can be used for adaptive phase control in the case of 
the propagation of quasi continuous-wave radiation 
under conditions of irregular wind refraction.6 

In this paper we study a model of an elastic 
continuous mirror intended for modal phase control 
based on first- and second-order aberrations. The 
response function, the base modes for an operating 

prototype of a circular mirror clamped at the center 
and controlled with the help of six concentrated loads 
along its contour are calculated based on the theory of 
thin plates. 

1. In modal control the deflection of the. 
reflecting surface of the mirror w(r, ) is the 
superposition of the base forms of deflection wi(r, ): 
 

 (1) 
 

where Ui are the coordinates of modal control and I is 
the number of such coordinates. 

It is convenient to choose as the basis wi(r, ), 
1, ,i I  the system of Zernike polynomials Zi(r, ), 

which are usually employed to describe optical 
aberrations. The base forms wi(r, ) are formed as 
linear combinations of the response functions of the 
actuators k(r, ): 
 

 (2) 
 

where K is the number of actuators, K  1. 
The response function of the k-th actuator 

k(r, ) is the deflection of the mirror with a unit 
displacement of the k-th actuator and zero 
displacements of the other actuators. The coefficients 

bi,k, 1, ,k K  form the basis vector ib


 whose elements 
are proportional to the controlling displacements, 
forming the i-th form wi(r, ) of deflection of the 
mirror. Thus the collection of response functions 
k(r, ), 1, ,k K  is the most important 
characteristic of the mirror, and determines the 
possibility and accuracy with which the chosen basis of 
modal control is formed with its help. 

We shall study a controllable mirror in the form 
of an elastic, circular, thin plate whose center is 
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clamped (Fig. 1). Rods, which are displaced by means 
of pushers with the help of actuators and restoring 
springs perpendicular to the plane of the mirror, are 
evenly spaced along the contour of the plate. As a result 
the mirror is deformed by a system of concentrated forces 
and moments acting on its contour. 

We shall calculate the response function k(r, ) 
by a variational method using the approximations of 
the theory of thin plates,7 which is applicable if the 
thickness h of the plate is much smaller than its radius 
R0 (h ` R0). Let their six rods be on the contour of 
the mirror: K = 6. Then assuming that the rods are 
points where the rods are attached: 
 

 
 

 (3) 
 
where y0 is a unit displacement on the k-th actuator 
and l2 is the distance from the point of application of 
the force to the edge of the mirror. 
 

 
 

FIG. 1. Construction of the adaptive mirror:  
1 – reflecting plate; 2 – rods; 3 – pusher; 4 – stepping 
motor; 5 – restoring spring. 

 
Since the elasticity of the holding system at the 

center is not known a priori we shall first assume that 
it is absolutely rigid. In this case the form of the 
deflection at the point r = 0 must satisfy the 
following boundary conditions: 
 

 (4) 
 

 (5) 
 

The total energy of elastic deformation of the 
mirror and the system clamping the actuators has  
the form 
 

 
 

 
 

 
 

 (6) 
 

where E is Young’s modulus;  is the Poisson ratio of the 
material of the elastic plate; Kl is the stiffness of the of 
the l-th spring; Xl is the deformation of the l-th spring; 
and,  is the holding factor at the center of the mirror. 

We shall approximate the response function of 
the k-th actuator k(r, ) by the series 
 

cos
 

 

 (7) 
 

According to the variational method the 
coefficient Cnm in the series (7) is determined by run. 
minimizing the energy (6) with respect to the set of 
coefficients Cnm satisfying the geometric boundary 
conditions (3)–(5). 

The contour lines of deflection for the response 
function of the mirror actuator are shown in Fig. 2. 
One can see that the response function is 
substantially nonlocal. 

The basic vectors i,b


 1,i I  were calculated by 
the method of the least squares. In so doing, taking the 
distribution of the intensity of the light beam on the 
mirror into account, a weight in the form of a Gaussian 
function with a characteristic scale a = 0.3R0 was 
employed. Thus the problem of minimizing the 
following functional of the discrepancy between the 
mode sought wi(r, ) and the corresponding 
polynomial Zi(r, ) was solved: 
 



 
 

 exp  (8) 
 

 
 

FIG. 2. The contour lines of deflection for the 
response function of the lower actuator, whose 
location is marked by the arrow. 
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The components of the vectors i,b


 1, 5,i   
forming the base modes of the mirror, with which the 
reflected beam acquires tilts, focusing, and 
astigmatism of the phase, are presented in Table I. 
 

TABLE I. 
 

 
 

The cross sections of the form of deflection of the 
mirror for these modes wi(r, ), 1, 5,i   are shown in 
Fig. 3. One can see that the second-order modes wi, 

3, 5,i   are close to the corresponding Zernike 

polynomials. The tilt modes wi, 1, 2,i   differ 

substantially from Z(, 1, 2,i   because we have 
assumed that the center of the mirror is rigidly held. 
 

 
 

FIG. 3. Sections of deflection of the mirror by 
the plane  = const in reproducing tilts (a), 
focusing (b), and astigmatisms (c). The solid 
lines correspond to the base modes w1, 1, 5,i   
and the broken lines correspond to the Zernike 
polynomials Zi,  1, 5.i  

 

2. It is possible to form a given basis, in particular, 
in the form of a system of Zernike polynomials Zi(r, ) 
with finite accuracy on a mirror with a limited number 
of actuators. The standard deviation i of the mode  
wi(r, ) on a correctable aperture of radius R is equal to 
 

–

 
 

 (9) 
 

Since the modes wi(r, ) were determined to 
within a constant factor we introduced a normalization 
coefficient C in Eq. (9). The value of this constant is 
calculated by minimizing i. 

The dependence of i on the radius R of the 
working aperture of the mirror for the five 
lowest-order aberrations is shown in Fig. 4a (solid 
curves). The rms error 1,2 for the tilt modes increases 
monotonically as the radius R of the working aperture 
decreases; this is caused by significant deviations of 
the form of deflection at the center of the mirror, held 
rigidly on the axis, from a tilted plane (Fig. 3a). 
Conversely, for focusing, the error ç decreases as the 
radius R decreases; this is evidently attributable to the 
increase in the relative contribution of the moment 
load and therefore to the fact that the form of the 
deflection of the mirror is more nearly parabolic. In 
forming astigmatisms the discrepancies 4,5 also 
decrease as R decreases. For a Gaussian beam with 
a = 0.3R0, the working aperture may be taken to be 
equal to the visible spot, whose radius R g 0.6 R0. 
Then on the working aperture the error in the formation 
of phase aberrations is equal to 3.5% for focusing, 0.5% 
for astigmatisms, and about 13% for tilts. 
 

 
 a b 
 

FIG. 4. The normalized standard deviation i, 
1, 5,i   of the base modes wi,  1, 5i  from the 

corresponding Zernike polynomials Zi,  1, 5i  

(a) and the relative weight di, 1, 5,i   of the 
extraneous aberrations (b) as a function of the 
radius R of the working aperture of the mirror. 
i = 1, 2 – tilts; I = 3 – focusing, I = 4, 5 — 
astigmatisms. The solid lines correspond to the 
starting model of the mirror, the dotted lines 
correspond to a "semirigid" mirror, and the 
dashed lines correspond to the improved mirror. 

 

The error i arises owing to the presence of 
extraneous polynomials Zp, p − i in the base mode 
wi(r, ). The relative weight of the extraneous 
aberrations in the base mode wi (r, ) is given by the 
following relation; 
 

 (10) 
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where ip is the coefficient in the expansion of the 
mode wi(r, ) in a system of the Zernike polynomials: 
 

 
 

 (11) 
 

The weight of the extraneous aberrations di, 
1, 5,i   as a function of the radius R of the working 

aperture is shown in Fig. 4b. The dependence di(R), 
1, 5,i   is similar to the errors i obtained for the 

corresponding modes. The relative weight di of the 
extraneous aberrations in the base modes w1,2, 
corresponding to tilts of the mirror, increases 
approximately up to 25% as R decreases. The main 
extraneous aberration in w1,2 is the coma. As indicated 
above this is due to the assumption that the center of 
the mirror is rigidly held down. In the base focusing 
mode w3 the weight d3 increases as R increases, 
reaching 7% at R = R0. The largest extraneous 
aberration in w3 is the spherical aberration, and its 
sign is opposite to that of the focusing. The weight of 
the extraneous aberrations in the formation of the 
astigmatisms w4,5 does not exceed 1.5%. 

The increase in the angular divergence of the 
radiation reflected from the mirror is related with the 
error in the reproduction of the lowest-order phase 
aberrations. The quality of tilt control and control of 
the beam focusing can be characterized by the power 
P(0) of the radiation propagating after the corrector 
in a given solid angle 0: 
 

 (12) 
 

The radiant intensity of the radiation I(, ) is 
determined by the amplitude of the light field 
E(x, y, 0) of the reflected beam. For a collimated 
beam with a Gaussian profile incident normally on the 
aperture of the mirror we have 
 

 
 

 (13) 
 

In the case of an ideal corrector, whose deflection 
corresponds to the Zernike polynomials, the phase 
(x, y) is equal to 
 

 (14) 
 
in the case of the mirror studied here 
 

 (15) 
 

Let 0 be the angle at which the power 
P0() = exp–1P, where P is the total power, for a 
Gaussian beam reflected from an ideal corrector. For 
the same beam reflected from the mirror under study it 
is not difficult to find the power P*(0) in the solid 
angle 0 with the help of the parabolic theory of 
diffraction and the relations (12), (13), and (15). As 
the calculations show, in the case of focusing by the 
mirror the power P0(0) is equal to 99.8% of the power 
P0(0) of a beam with an ideal parabolic front, and in 
the case of tilting the percentage is 66%. 

3. Interferometric investigations of the operating 
model of the mirror showed that the deviation of the 
real base forms of deflection from the corresponding 
Zernike polynomials over the entire aperture of the 
mirror is about 5% for tilts, 21% for focusing, and 15% 
for astigmatisms. It is obvious that the tilts are 
reproduced by the model of the mirror better than 
expected in the calculations, and therefore the 
assumption that the center of the mirror is rigidly 
clamped was not confirmed. 

The experimental results showed that the holding 
factor of screw-type clamping at the center of the 
mirror is equal to  = 0.16 D. This made it possible to 
calculate the response function, the basic vectors, and 
modes for a "semirigid" model of the mirror which 
better describes the experimental model. For the 
"semirigid" model a computed error in reproducing the 
tilts of the mirror does not exceed 0.3% (for a working 
aperture of any radius, see Fig. 4a). The relative 
weight of the extraneous aberrations in the base modes 
corresponding to the tilts of the mirror does not exceed 
0.5% for this case (Fig. 4b). 

It should be noted that the significant error 
obtained in the experiment for second-order aberrations 
is connected with the fact that the required tolerances 
are exceeded in the fabrication of the mirror plate. 

The appearance of spherical aberration 
accompanying the formation of focusing on the mirror 
is explained by the fact that the restoring springs 
generate a strong moment load whose sign is opposite 
to that of the moment force of the pushers. This can be 
eliminated by placing the restoring springs between 
the mirror and the pushers. The rms error in 
reproducing the focusing by a mirror with this 
improved construction is 1.5–2 times lower depending 
on the radius of the working aperture (Fig. 4a) and 
the relative weight of the spherical aberration 
decreases from 7% to 4% at R = R0 (Fig. 4b). The 
astigmatisms are not reproduced as well as by the 
initial construction. Nonetheless it is preferable to 
change the position of the restoring springs, since all 
second-order aberrations are reproduced with an 
accuracy which is not less than 3% on a working 
aperture with radius R = 0.6R0. 

4. The theoretical analysis performed above and 
interferometric measurements confirmed that first- and 
second-order phase aberrations could be corrected with 
the help of a flexible mirror, controlled by loads 
applied to its contour. The use of rods moved by  
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electromechanical actuators for obtaining the loads 
makes it possible to combine a wide dynamic range of 
phase control with the required accuracy in 
positioning the reflecting surface. 

The order of the correctable aberrations can be 
increased with the help of a system of actuators which 
create independent force and moment loads. 
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