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A new method for the measurement of the wavefront variance is proposed. The 
optimal measurement range for the method is found to be /50 <  < /8, for which the 
accuracy of the method is about 6–30%. 

 
 

Testing the performance of optimal systems by 
means of speckle techniques is sometimes more 
effective than the traditional methods of optical 
quality control.4,5 

In 1978 Poltaratskii1 reported the discovery of a 
speckle-pattern symmetry effect. The essence of this 
phenomenon is the point symmetry of the intensity 
distribution around the optical axis under certain 
conditions of the optical experiment: 
 

 (1) 
 

where r


 is the position vector of the observation 
point in the recording plane. In Refs. 6 and 7 it was 
demonstrated that Eq. (1) holds for coherent beam 
scattering by ensembles of large particles (i.e., for 


1,k d.  where d is the particle size; | 2 /k   


 and 

 is the wave length) in those experiments in which 


  
( ) ( ) * ( )I r u r u r  is determined by the Fourier 

transform of the transparency function 


0( )u  or the 
reflection of the scattering volume. In other words, the 
field in the recording plane is found as follows: 

    
   

0( ) ( ) exp( ) ,u r u iB r d  where is a proportionality 

coefficient which depends on the experiment setup. 
Note that a speckle pattern in which the intensity 

( )I r


 is defined as above is called the Fourier speckle.7 
The properties of Gaussian statistics and the 
assumption of mutual independence of the scattering 
particles and phase irregularities make it possible to 
obtain simple expression for the correlation and 
variances of the intensity recorded in the Fourier 
speckle pattern2,7 
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where the symbol 
,

...
 

 denotes averaging over the 

random parameters (i.e.,  in the particle ensemble; 
 over the phase irregularities); n is the scattering 
amplitude of a single scatterer; ( )A 


 is the complex 

field amplitude produced by the phase irregularities: 
( ) exp{ln ( ) ( )},A iS     
  

 here In is the amplitude 
level, and S is the phase. Using the well-known 
relationship 
 

 
 

where a,b
l.k  are the cumulants of the function f(a, b), 

and assuming that the cumulants higher than second 
order are small:7  a,b a,b

n,m l.k ,n  1 + k < 2, it is possible 

to obtain a simple expression for the normalized 
intensity correlation function K. This expression 
relates K to the spatial variance of the wavefront V: 

2
p{ ( ) ( )} :V S S    
 

 

 

 (3) 
 

Here p( )S 


 is the value of the phase in the scalar 

approximation for radiation at the time t and the point 
;


 the symbol ...

 denotes averaging over the entire 

region in which the transparency function is defined, 

i.e., for 0 .  
 

 

Let us consider the conditions for satisfying 
Eq. (3): 

i) Gaussian statistics must be valid for the 
Fourier speckle pattern for ( ) 0;u r 


 

ii) individual scatterers and phase irregularities 
must be mutually independent throughout the entire 
volume; 

iii) cumulants higher than second order must be 
small for the complex field amplitude ( ).A 


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Conditions (i) and (ii) can be easily realized in an 
experiment, e.g., by spatially separating the scatters 
from the phase irregularities (ii), or by choosing a 
large number of scatterers N (i). 

According to the results of Ref. 8 the 
superposition of N > 6 scattered fields is estimated to 
be sufficient for Gaussian statistics to apply. 
Satisfaction of condition (iii) is possible in the case of 
a slightly turbulent medium; however, condition (iii) 
becomes questionable if while testing the optical 
systems regular wavefront distortions occur along with 
the local ones. To test condition (iii), we borrowed the 
results of analyses of the optics of large telescopes,4 
which yielded the following error pattern: random 
error 52 %, regular errors: coma 28%, astigmatism 
17%, and zonal error 3 %. We analyzed the maps of the 
optics of these telescopes and found the amplitude 
distributions of the deviations of the optical surfaces. 
Twenty maps with 1414 to 3232 points were 
investigated. The density function p(h) of the 
amplitude distribution ( )h 


 was sought in the form10 

p(h) = A exp{ h (x0)
}. For the initial maps the 

parameter  fell in the range  = (2.05 ± 0.14), 
while for the local error maps  = (2.11 ± 0.14), for 
the coma  = (2.1 ± 0.1), and for the astigmatism 
 = (2.04 + 0.11). It follows from these data that the 
distribution of the amplitude errors or the wavefront 
phase remains Gaussian with a high probability of 
 95%. The point-to-point spatial resolution of the 
maps varied from 1/14 to 1/32 of the respective 
aperture diameter (condition (ii)). As for condition 
(iii), it should be noted that the symmetry effect is 
observed only for weak phase fluctuations, when the 
higher-order moments and cumulants remain small. 

To test the capabilities of the wavefront phase 
variance measurement technique (3), we made use of 
the fact that the value of V, defined with respect to the 
nearest sphere, is related, to within the accuracy of a 
scale factor, to the standard deviation  of the defects 
of the optics forming the wavefront. The need for a 
method to measure 2 is now more acute because of a 
new All-Union standard demanding that optical 
devices be certified according to their 2 value. So far, 
the 2 value was been obtained only by measuring the 
local characteristic of the optics map, whereas using 
the speckle pattern allows one to get the total 
(integral) characteristic 2 for the optical system. This 
quality parameter or figure of merit 2 relates directly 
to the technological process, i.e., it defines the scale of 
the optical errors, whereas other integral parameters of 
the quality of the optical system are certificational but 
have no technological meaning. 

The experimental setup for measuring 2 is shown 
in Fig. 1 (Ref. 3). The laser beam, expanded and 
collimated by the telescope T1 passes through the 
object being tested (TO) and the revolving, randomly 
inhomogeneous amplitude screen, which has orifices of 
the same diameter d. These orifices are randomly 
distributed with a packing density C = 0.04. The 
objective T2 of the second telescope produces the 

Fourier speckle image in the plane IP behind which 
the ocular is set. Varying the distance L, and the 
magnification of the ocular, we may scale the speckle 
pattern. In our experiment we chose L = 2 m, 
d = 0.001 m and the distance between the 
photodiodes L = 0.06 m. We found that the optimal 
distance of the photodetector from the optical axis l/2 
is equal to  (0.4–0.6) r0, where r0 is the radius of the 
speckle pattern, which permits us to neglect the 
magnitude of the mean field: 


( ) 0.u r g  The accuracy 

of the symmetrical mount of the photodetectors with 
respect to the optical axis must be kept with 1/10 of 
the average size of the individual speckle (in our 
experiment this meant an accuracy of up to 0.0006 m). 
 

 
 
FIG. 1. The experimental setup for measuring the 
wavefront variance of optical components. 

 
If phase perturbations introduced into the 

wavefront by the pattern-forming optics are small, we 
can observe a distinct symmetry effect. Upon 
introducing the tested optical piece with known 2

TO  
into the tract, the symmetry is broken. .The variance 
for radiation which has passed through the optical 
tract is then obtained from Eq. (3). Apparently, the 
total variance is equal to the sum of the variances of 
the wavefront-forming optics – 2 2

OS TO :    
 

 (4) 
 

Accounting for the dimension of the wave vector 

,k


 we arrive at a scale for the defects of the TO. To 

obtain reliable data on the value of 2
TO,  we tested two 

different optical setups: 
1) the objective MTO-1000 (a mirror telescope 

objective with a 1:10 aperture and focal distance 
F = 1000 mm), 

2) the Zeiss-50 telescope with a 1:8 aperture and 
F = 400 mm. 

In the first case the value of K in Eq. (3) was 
founded to be K = 0.3. This corresponds to 

2
OS  = /9. The second system gave K = 0.8, i.e., 
2
OS  = /25 (Figs. 2b and c). These values of 2

OS  
already testify to the sensitivity of this method. We 
may conclude that the first optical system is unsuitable 
for measuring the optical components of low TO. 
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FIG. 2. The symmetry effect in the 
Fourier-speckle recording plane: a) stylized 
intensity distribution in the plane; 
b, c) speckle-pattern experimental images: 
b) K = 0.3 and ñ) K = 0.8. Circles connected 
through the center of the speckle pattern show the 
visually observed symmetry, 1 is the coherent 
part of the intensity distribution of width 2 0 for 
entrance aperture diameter Ô and focal distance 
F; 2 is the intensity of the individual speckles; 3 
(dashed line) is the intensity distribution for a 
single scatterer of size d; 4 and 4 are stylized 
images of symmetrical spots in the speckle pattern, 
likewise for (–r, r). 

 
To test the data so obtained, we checked a set of 

flat optical plates, 34 mm in diameter, with various 
values of 2

TO.  To put the needed relief onto the 
surface of each plate, they were etched by a polishing 
tool. The required TO was provided by varying the 
polishing time. All of the plates were tested on a 
Twyman-Green interferometer with light passing 
twice through the plate to obtain its interferogram. 
The images were measured automatically on a SKIF 
device with an accuracy of (1/60–1/45)  (Ref. 5). 
The accuracy of this processing was checked repeatedly 
by comparing it with the results from the Hartman 
technique and data from manual measurements. The 
accuracy of 2

TO  achieved for our pieces was better 

than 2%, thus making possible to compare it with the 
results from the interference measurements. The 
results of such comparisons for three separate pieces 
are presented in Table I. 
 

TABLE I 
 

Comparison of the S measurements with the 
interferometry data. 

 

 
 

Let us further analyze the optimal dynamic range 
of our method.3 The measurement range for KI and DI 
when using an X6–4 instrument is close to 100, from 
which we get the values Kmin = 0.01 and 
Kmax = 0.99, from which we have 
/132 < TO < /5. For either surface of a flat thin 
plate, the standard deviation is given by s = TO/n, 
where n = 1.5147 at  = 0.6328 m. The measurable 
range for  is then /200 < s < /8. The 
normalized relative accuracy may then be estimated by 
known techniques,10 so that for our 
cases/s = 000097 (/s)

2.At a 95% probability 
level the statistical error of s about 20%. The relative 
errors of the measured values {DI/DI} and {K/KI} 
amounted to 5 %.  

Estimating the capabilities of the technique in 
general, we see from our experiment that a reliable 
result is obtained for the wavefront when 
1/33 <TO < /5 and for either surface when 
/50 < s < /8. The normalized accuracy of the s 
measurements for these extreme ranges should then not 
exceed 30%. The value of s for flat optical plate No. 1 
(see Table I) does not fit this range, which accounts 
for the heavy disagreement with the interferometry 
data in this case. We estimate that the accuracy of this 
method will increase for lower TO or s. 

Let us note certain particularities of the 
experiments: 

1) To reduce the statistical error (up to 20% for a 
lag of  0.1 s) the measurement time interval and the 
dynamic range for DI and KI should be increased. 

2) When measuring low s, optics with very 
small OS (OS n TO) should be chosen. 

3) The photodetectors must be aligned with the 
Fourier-speckle image plane with the highest possible 
accuracy. In our experiment we attained an accuracy of 
about 5  10–5 m. 

Among the merits of the new technique mention 
should be made of its vibrational stability, the 
simplicity with which the measurements can be 
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automated, and the sensitivity to low values of . This 
technique might be used to scrap faulty optics, e.g., 
microobjectives, mirrors, etc., by their TO; for 
automatic fine adjustment of optical tracts (in that 
case one would not need to know the focal optical error 
map). The optical system might then be adjusted by 
changing the distance between the optical elements to 
minimize the value of TO. One of the possible 
applications of this method might be to measure the 
high-frequency errors of large mirrors. This kind of 
defect increases the width of the point spread function 
and does not yield to simple control techniques. The 
new method might be useful for studies of atmospheric 
turbulence with rain or snow playing the role of the 
amplitude screen.2 

The authors find it a pleasant duty to express 
their thanks to O.A. Reutova and F.P. Parshin, who 
took part in the realization of the experiment, and to 
A.G. Borovoi, with whom they discussed various 
stages of the work. 
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