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A simple geometric-optics formula to the absorption cross section of a two-layer sphere 
is derived and analyzed. The case of particles with nonabsorbing shells is studied separately. 
The results of calculations performed using the exact theory of scattering for two-layered 
particles were used to determine the limits of applicability of the approximation. 

 
 

Interest in the problem of the scattering of light 
by nonuniform particles has been increasing in the last 
few years.1–2 In a number of cases (multilayer spheres, 
spheres with definite types of radial nonuniformity of 
the refractive index, etc.) exact solutions of the 
corresponding scattering problems have been obtained. 
However the calculations based on the exact formulas 
are quite complicated and they are not always suitable 
for practical studies. This is especially true for large 
scatterers. It is thus especially important to develop 
approximate approaches to the solution of this problem. 

The purpose of this work is to study the properties 
of the absorption cross section of a two-layer sphere by 
the method of ray optics. In so doing a variant of the 
geometric-optics approach, based on adding the 
intensities rather than the fields, is employed. In this 
procedure the interference structure is averaged. We 
note that this type of averaging occurs in most real 
dispersed media owing to their polydispersity or the 
nonmonochromaticity of the incident radiation. 

Let a plane wave with wavelength  be incident on 
a particle having a core with a radius a and a shell with 
a radius b ( ` a, b – a). It is assumed that the 
surrounding medium is transparent and the material of 
the core and the shell can be absorbing (me = ne – ie 
are the relative complex refractive indices of the core 
(e = 1) and the shell (e = 2)). We shall represent 
radiation incident on the particle as collection of pencils 
of rays, characterized by an angle of incidence  and the 
spread in the azimuthal angle dX and the angle of 
incidence .3–4 Then we obtain for the energy flux dP0, 
incident on an element of area of the particle 
dS = b2 sin d dX 
 

 (1) 
 

where I0 is the intensity of the incident radiation. Part 
of the energy dEabs absorbed by the particle can be 
written in the form 
 

 (2) 
 

where the function F() is to be determined. We shall 
calculate it. As shown in Fig. 1, at the point A of the 

surface of a two-layer particle the incident ray is divided 
into the ray reflected outward and the ray refracted 
inward. The relative fraction of the energy transmitted 
by the boundary is equal to 1 – R (R is the Fresnel 
power reflection coefficient for the first interface). As 
the ray propagates along [AB] part of the energy is 
absorbed, and the relative fraction of relative fraction of 
the absorbed energy is equal to 1 – exp(–f) 

2
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4
, .f k AB k

    
 For the ray incident on the 

sphere at the point C the relative fraction of the 
absorbed energy is equal to 1 – exp(–p) 
(p = k1d1 + 2k2d2, d1 = DM, d2 = CD =MN, 

k1 = 14
.

 
 

 Of course, reflected rays also appear at 

points D, M, N, and B. As special calculations show, 
however, to a first approximation their contribution 
can be neglected (particles with large values of the 
refractive indices m1 and m2 are not studied here).  
 

 
 
FIG. 1. The path of refracted rays in a two-layer 
particle. 
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The only exception is the region with n1 < n2 and 
the region of total internal reflection (ÒIR) of 
radiation by the core. Here and below we shall assume 
that l ` nl (l = 1, 2). Then the attenuation of the 
TIR owing to absorption is negligibly small and a real 
critical angle of incidence c can be introduced: 
sinc = n1/n2. The rays incident on the core at angles 
larger than the critical angle undergo the TIR and the 
relative fraction of the absorbed energy in this case is 
equal to 1 – exp(–s), where s = 2k2 d2 (we neglect 
multiple rereflections). 
 

It follows from what was said above that 
approximately 
 

 (3) 
 
where  = p, s, and f depending on the point of entry 
of the ray into the particle. 

Substituting Eq. (3) into Eq. (2) and summing 
all incident rays we obtain for the absorbed energy 
Eabs: 
 

+

 
 

 (4) 
 
where c is the angle of incidence of the ray on the 
particle, corresponding to the critical angle c, and 0 is 
the limiting angle of incidence, corresponding to the ray 
that is tangent to the core at one point (see Fig. 1). 
Obviously, for  > 0 the rays incident on the particle 
do not interact with the core. It follows from 
trigonometric identities and Snell’s law (see Fig. 1) that 
sin = n2sin, sin = b/asin, sin1 = n2sin/n1, 
sin0 = a/b = , whence it easily follows that 
 

 (5) 
 

Thus, for n2  1 there is no limiting angle 0: all 
rays are focused on the core and the third integral in 
Eq. (4) vanishes. For n2 = 2 and n2 = 4/3 this 
corresponds to the parameters   1/2 and   3/4. 
For n2  1 a limiting angle 0 exists for any value of . 
We note that if n1 < n2, then the critical angle c, as 
follows from Eq. (5), does not depend on the material 
of the shell. If n1  1, then the angle c does not exist 
and the second integral in Eq. (4) vanishes. This is 
also true for n1 > n2; then it must be assumed in 
Eq. (4) that c = 0. 

Introducing the new variable of integration 
 = sin2, we easily obtain from Eq. (4) the 
following expression for the absorption cross section of 
a two-layer sphere Ñabs = Eabs/J0: 
 

+

 
 

 (6) 
 

where 
 

 
 

 
 

 
 

N1 = n2, and 1
2 1 .N n  The functions p(), s(), and 

f() can be determined by applying Snell’s law and 
trigonometric identities (see Fig. 1): 
 

 
 

 
 

 
 
where 
 

 
 
We note that in most cases the second integral in 
Eq. (6) can be neglected. Then the approximation (6) 
differs from the anomalous diffraction approximation 
(ADA)3,5,6 only in that the curvature of the rays in the 
particle and the reflection from the shell are taken into 
account. As n1  n2, n2  1, the refraction and 
reflection at the interfaces can be neglected and the 
expressions (6) transforms into the form corresponding 
to the ADA. 

We shall study the asymptotic behavior of the 
expression (6) in the region of strong and weak 
absorption. In the limit 22   (1 = const) it 
follows from Eq. (6) that 
 

 (7) 
 

and the integral 
1

2
0

( )r n Rd   is calculated 

analytically in Ref. 7. The asymptotic behavior of 
Eq. (7) has a clear physical meaning: all radiation 
penetrating into the particle is absorbed. In the region 
of weak absorption we easily obtain 
 

 (8) 
 
where 
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and V is the volume of the particle. 

It follows from Eq. (8) that the volume 
absorption coefficient Kabs = Ñabs/V does not depend 
on the size of the particle. In the region of weak 
absorption this law also holds for nonspherical 
particles.6 At the same time in the region of strong 
absorption, as follows from Eq. (7), the quantity Kabs 
decreases as the size of the scatterer increases: 
 

 (9) 
 

where 
1

0

.r Rd   We note that the formula (9) is also 

valid for nonspherical particles, if r is interpreted as the 
relative fraction of the energy reflected by the particle 

into the surrounding medium. In this case r will depend 
on the orientation of the particle in the field of the 
incident wave, the shape of the particle, etc. 

We shall discuss in greater detail the important case 
of two-layer particles with nonabsorbing shells 2 = 0. 
If the nonabsorbing shell is quite soft (m2 – 1| n 1), 
then in calculating the absorption cross section the shell 
can be neglected altogether: everything is determined by 
the absorption cross section of the core.6 If the shell is 
hard, then, as analysis of the results of numerical 
calculations performed based on the exact theory shows, 
as the size of the shell increases (a = const) Cabs 
approaches some asymptotic value.8,9 The value of the 
parameter as = a/b for which this asymptotic behavior 
is reached can be determined from simple physical 
arguments. Rays with angles of incidence   0, where 
the angle 0 is defined in Eq. (5), are focused on the 
core. If n2 > 1, then all incident rays are focused on the 
core. As  decreases (a = const) the parameter n2 
decreases and rays which are not focused by the shell on 
the core. For the boundary conditions we must obviously 
use n2as = 1, whence as = 1

2 ;n  this is also confirmed 
by the exact calculations. 

 

 
 

FIG. 2. The absorption efficiency factor Qabs of a two-layer-particle as a function of the diffraction 
parameter 2 (1 calculation according to the exact theory, 2 calculation using the formula (6), 3 the 
ADA)5–6 with n1 = 1.5, n2 = 1.34,  = 0.8: a 1 = 10–3, 2 = 10–4, b 1 = 10–2, 2 = 0. 

 
In conclusion we shall compare the results of 

calculations of the absorption efficiency factors 
Qabs = Cabs/b

2 with the exact theory2 and the formula 
(6). The calculations were performed on a BESM-6 
computer using the algorithm of Ref. 2 with n1 = 1.0, 
1.34, 1.5, 1.6; 1 = 10–4, 10–3, 10–2; n2 = 1.34, 1.5, 1.6, 
2.0; 2 = 0, 10–4, 10–3, 10–2;  = 0.5 (0.1) 0.9, 2 = 2 
(1) 200. The values of Qabs in the ADA were calculated 
at the same time.5,6 The following conclusions can be 
drawn from analysis of the computational results. The 
formula (6) satisfactorily describes the absorption cross 
section of a two-layer particle. For example, for a  12 
(Fig. 2a) and a  8 (Fig. 2b) the error in the 
calculation of Cabs does not exceed 10%. In the other 
cases studied the error did not exceed 20% with 

a  712. This indicates that the approximation (6) 
can also be used in the case of not very large cores, where 
the use of the method of ray optics is problematic. As 
expected, the accuracy of the expression (6) decreases as 
the thickness of the shell decreases (primarily for 
nonabsorbing cores). It is sometimes stated in the 
literature that the anomalous diffraction 
approximation10 is also applicable for quite hard 
particles (right up to refractive indices n  2). For 
example, in Ref. 10 this conclusion is drawn based on a 
comparison of the extinction efficiency factors 
calculated with the ADA and exact formulas for 
two-layer particles. It is obvious from analysis of 
Figs. 2a and b that this rule does not hold for the 
absorption efficiency factors. For example, for 2  60 
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(Fig. 2a) and 2  20 (Fig. 2b) the relative error of the 
ADA is  50% (the relative error of the formula (6) is 
less than 20%). As one can see from the figures presented 
the absorption curves Qabs(2) are characterized by small 
ripples, which cannot be described on the basis of the 
approximation. (6) This is connected with the fact that 
the interference in the drop is neglected. 
 

 

 
 
FIG. 3. The albedo  of a two-layer particle as a 
function of the diffraction parameter 2 (1 – 
calculation using the exact theory, 2 – calculation 
using the formula (6); 3 – ADA)5,6 with n1 = 1.5, 
n2 = 1.34,  = 0.8: 1 = 10–2, 2 = 0,  = 0.9. 

 
Taking into account the fact that in the 

geometric-optics limit the extinction cross section 
Ñext = 2b2 is also easy to obtain based on Eq. (6) 
the albedo of the particle  = 1 – Ñabs/Cext. The 
values of  calculated in the anomalous diffraction 
approximation and the geometric optics 
approximation and by the rigorous theory for 
two-layer particles are compared in Fig. 3. Analysis 
of the figure shows that the relative error of the 
simple geometric-optics formula for the albedo  in 
the case studied is less than 5%, if 2  2. In practice  

the quantity 1 –  is the more important parameter; 
the error in calculating this parameter in the case at 
hand is less that 10% for 2 > 28. 

The results of this work can be used for making 
different estimates and calculations in the range of 
diffraction parameters 2 where it is difficult to 
perform calculations by the exact theory. 

I thank L.G. Astaf’eva and E.P. Zege for a 
number of valuable suggestions and remarks. 
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