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A method for calculating the distribution of the average intensity of a partially 
coherent laser beam, propagating in a turbulent atmosphere under conditions of thermal 
self-action, is developed based on an equation for the mutual coherence function of the 
wave field. Using the method developed it is shown that even small fluctuations of the 
wind velocity and refractive index strongly limit local self-focusing, which arises in the 
presence of nonlinear wind refraction. The computational data on the average beam 
intensity for the nonstationary state of thermal self-action, taking into account at the 
same time both the turbulent pulsations of the refractive index and fluctuations of the 
wind velocity, are presented for the first time. 

 
 

The problem of taking into account the nonlinear 
interaction of radiation with a medium, when owing to 
the absorption of some of the energy of laser beams by 
gases and aerosol in the atmosphere the air near the beam 
is heated, arises in the analysis of the propagation of 
powerful laser radiation in the atmosphere.1 In a real 
atmosphere the thermal self-action occurs against a 
background of turbulent fluctuations of the refractive 
index and the wind velocity, which further complicates 
the theoretical study of this process. The calculations of 
the characteristics of a beam under conditions of thermal 
self-action by the method of statistical tests2–7 have been 
limited to taking into account either the fluctuations of 
the wind velocity2,3,6,7 or random pulsations of the 
refractive index.2,3,4 

In this paper we describe a method that permits 
calculating, based on the equation for the mutual 
coherence function of the wave field, the energy 
characteristics of laser beams propagating under 
conditions of thermal self-action, taking into account 
simultaneously the turbulent pulsations of the wind 
velocity and the refractive index. The distribution of the 
average intensity in the beam as a function of the 
conditions of propagation is analyzed. The results 
obtained are compared in particular cases with existing 
calculations performed by the method of statistical tests. 

Let the laser beam propagate along the X-axis of a 
Cartesian coordinate system. Then the equation for the 
complex amplitude of the radiation field U(x, ,


 t) 

under the conditions of thermal self-action in the 
atmosphere has the form1 
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 t) are, respectively, the 

change in the dielectric constant owing to turbulence 
and owing to heating of the air by the radiation. 

The change in the temperature can be represented 
in the form1 
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trajectory of a "fluid" particle in the field of the 
transverse component of the Lagrangian wind velocity 
V


 = Vx, Vy (Ref. 8); a, , and Cp are, 

respectively, the absorption coefficient, the density, 
and the heat capacity of air; and, 

I(x, ,


 t) = U(x, ,


 t)
2
 is the intensity of the 

beam. 
We shall assume that the coherence time of the 

source is much shorter than the characteristic time of any 
thermal nonlinear interaction of the radiation with the 
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medium. Then, since the medium has inertia, we shall 
assume that the temperature in Eq. (2) is the average 
temperature over fluctuations of the field of the source.6 

The random pulsations of the induced 
temperature which are produced by fluctuations of the 
radiation intensity, which arise as the laser beam 
propagates in the turbulent atmosphere, likewise can 
be neglected when the average intensity is calculated.4 

We shall neglect the random defocusing of the 
radiation by induced nonuniformities of the refractive 
index, which are formed by turbulent mixing of the 
heated air, compared with the defocusing by the 
average thermal lens in the region of the beam.1,9,10 

Based on what was said above, we replace in 
Eq. (1) the induced temperature T by its average value 
kTj. Assuming that the distribution of the 
components of the vector of fluctuations of the wind 
velocity is Gaussian, the expression for the average 
temperature has the form11 
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where 2
v  is the variance of the fluctuations of the 

wind velocity. 
For the steady-state regime of self-action 

(t > 3a0/   22
y V  (a0 is the effective radius of the 

beam in the x = 0 plane)12,13 assuming that the average 
intensity I  does not depend on the time, and passing 

to the limit t  , Eq. (3) can be integrated over t, 
which gives 
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where the z-axis is oriented along the direction 

V


 = {V, 0}; erfc() = 1 – erf(); and, erf() is 

the error function. 
 

The following algorithm was employed to 
determine the average intensity ( , , )I x t


 in the 

general case. The path x is divided into N-layers. At 
the boundary of each layer the turbulent distortions of 
the wave field are taken into account in the 
phase-screen approximation 
 

 
 

 (5) 
 
where j = 1, 2, , N. Then within the j-th layer the 
field Uj(x, ,


 t) will be described by Eq. (1), where 

1 0,   T is replaced by T  in accordance with 

Eq. (3), and x  [xj-1, xj]. 
Assuming that -correlation holds along the 

propagation path and that the turbulent fluctuations of 
the dielectric constant have a Kolmogorov spectrum,14 
we obtain for the mutual coherence function 
 

 
 
in the "j-th" layer, in accordance with Eqs. (1) and 
(5) and the approximations made above, the equations 
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where 2 2 6/5
n(1.46 ) ;q k xC   j j-1;x x x    2

nC  is the 

structure constant of the refractive-index fluctuations; 
and x  [xj–1, xj], j = 1, 2, , N, x0 = 0, 
xN = x. The quadratic approximation was employed 
in the exponential in Eq. (7).15 

In the case of a partially coherent, collimated, 
Gaussian beam we shall represent the coherence 
function 0 in the plane of the source in the form16 
 

 (8) 
 

where I0 is the maximum value of the average intensity 
and ac is the coherence radius. 

Retaining in the Taylor series expansion of the 
temperature difference in Eq. (6) in 


 the first 

nonvanishing term in the series and Fourier 
transforming Eq. (6) 
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 (9) 
 
we arrive at the radiation transfer equation.17 

We shall now transform to dimensionless variables: 
 

 
 

 
 

 
 

where 
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is the effective thermal self-action length in the case of 
uniform wind. 

Solving the radiation transfer equation by the 
method of characteristics we can represent the 
coherence function in the xj plane in the form 
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the characteristic ( )R x  satisfies the equation 
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with the boundary conditions j( ) ,R x R
  

j( ) ,
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2 2 2 1/2
D 0 0 k/ (1 / )L ka a a   is the effective diffraction 

length. 
It follows from Eqs. (8) and (9) that the function 

Sj in the emission plane can be represented as 
 

 (13) 
 

We shall calculate the integral over 


 in 
Eq. (11) approximately. For this we expand the 
function Sj in a Taylor series in a neighborhood of the 
point *


 of the maximum of the integrand in the 

expression (11) and we shall retain terms which are no 

higher than second order in :

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The values of 


 are determined from the system of 
equations 
 

 (15) 
 

The formula (14) for performing analytic 
calculations in Eq. (11) can be employed if the 
nonlinearity is weak P2 < 1, and also for large 
parameters P2 . 1, (Ref. 17), if Sj has one extreme 
point and 
 

 (16) 
 
where m, n = 1 and 2, and 1 and 2 are components of 
the vector .


 

In accordance with Eq. (14) we shall represent Sj 
in the form 
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It follows from Eq. (13) that 
 

 
 

 
 

 
 

Based on the formulas (17), (11), (7), and (9) it is 
easy to establish a relation between the functions 
Sj(xj, ,R


 


) and Sj+1(xj, ,R


 


) with whose help 
the turbulent distortions of the average intensity can 
be taken into account. This relation can be expressed 
in terms of the functions A, Â11, B22, and B12: 
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is a complex parameter characterizing the turbulent 

conditions of propagation over a distance Rºnl 
(Ref. 16);  = 1 if m = n, and  = 0 if m  n. 

The vectors R


 and 
d

R
dx


 in the xj plane are 

determined by solving numerically Eq. (12) with the 
boundary conditions in the xj+1 plane by the 
Runge-Kutta method for fixed value of ,R


 which is a 

node of a uniform coordinate grid, and different values 
of .


 Once the values of the function Sj+1(xj+1, ,R


 

) 

at the nodes of a uniform grid {zi, ók} are known, the 
function A(j+1), (j+1)

mn ,B  Dn, which, according to 
Eq. (11), is equal to 
 

 
 
in the plane xj can be found by constructing a spline or 
by interpolating according to the formula (17). Next 

its derivatives j 1

n
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2
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 are calculated by 

numerical differentiation. 
To present Sj+1(xj+1, ,R


 

) in the form (14) and 

then perform the integration in Eq. (11) over 

 it is 

necessary to find 
  from the system (15). This can be 

done using the following iteration scheme: 
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The vector j+1( )
d

R x
dx

  obtained by solving 

Eq. (11) with the boundary conditions 
 

 
 

is employed as zero approximation 
 (0). 

After 
  = 

 (k +1) is determined, by comparing 
Eqs. (14) and (17) an array of values of the functions 
A(j+1), (j+1)

mn ,B  Dn at the nodes of the grid {zi, ók} in the 

xj+1 plane is constructed: 
 

 
 

 
 
where m, n = 1, 2. 

Finally, substituting Eq. (17) into Eq. (11), 
setting 


 = 0, and integrating over ,


 we obtain the 

following expression for the average intensity in the 
xj+1 plane: 
 

 (20) 
 

In this work we calculated the average intensity 
of a partially coherent Gaussian beam using 
Eqs. (17)–(20) for different conditions of 
propagation. We studied the nonstationary regime of 
thermal self-action. 

The calculations show that for the case of a 
uniform wind1,17 and large nonlinearity parameters 
(P2 > 10), at certain distances x the maximum value 
of the intensity kIjm increases owing to the formation 
of a region in the beam where the radiation-induced 
nonuniformity of the refractive index forms an 
extended focusing lens. The fluctuations of the wind 
velocity spread out the average profile of' the induced 
temperature and, therefore, reduce the focusing action 
of the induced nonuniformity. For this reason the 
maximum intensity under conditions of fluctuations of 
the wind velocity will increase at distances greater 
than in the case of a uniform wind. This is illustrated 
in Fig. 1a. Moreover; growth of kIjm owing to local 
wind-induced self-focusing does not occur at all, if one 
of the 2 2

v / 1V   gT = 0 or gT  3 
2 2
v / 0V   is 

satisfied (at least in the region P2  100, for which the 
calculations were performed). When fluctuations of 
the wind velocity and refractive index are taken into 
account at the same time kIjm is not observed to 
increase with the distance x for values less than 

2 2
v / 1V   and qT = 3 (curve 2). Figure 1a also 

presents results which show how the position of the 
coordinate of the maximum intensity Rm and the 
energy "center of gravity" Rc changes: 
 

 
 
as the path length increases. (The displacements are 
given in units determined by normalizing to the initial 
radius of the beam a0). 

Figure 1b presents results for the effective radius 
of the beam normalized to a0; 
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along the z and, ó axes, respectively. One can see from 
the figure that if the fluctuations of the wind velocity 
cause the asymmetry of the beam to decrease (broken 
curves), then taking turbulent fluctuations of the 
refractive index along the path into account merely 
gives an additional uniform broadening of the beam 
along the axes; the same degree of asymmetry remains 
as in the case qT = 0 (dot-dashed curves). 
 

 
 

FIG. 1. The characteristics of the laser beam as a 
function of the path length for P = 10:  
(a) kIjm — solid lines and dots; Rm — dashed 
lines; Rc — dot-dashed lines: qT = 0(1, 2, 3); 
qT = 1 (2); 2 2

v / V  = 0 (1), 0.3 (2, 2), and 1 

(3); (b) 2 2
v / V = qT = 0 (solid lines), 

2 2
v / V  = 0.3, qT = 0 (dashed lines), and 
2 2
v / V  = 0.3, qT = 1 (dot-dashed lines). 

 

On the whole the calculations for the steady-state 
regime of thermal self-action show that the 
fluctuations of the wind velocity greatly change the 
aberrational picture of the distribution of the average 
intensity. The presence of turbulent nonuniformities of 
the refractive index on the propagation path leads 
primarily to broadening of the beam, whose effect on 
the distribution of the average intensity in the 
observation plane is much smaller than that of 
fluctuations of the wind velocity. 

Figure 2 shows the effect of fluctuations of the 
wind velocity on the characteristics of a beam 
propagating in the atmosphere under conditions of 
thermal self-action. It is obvious from the figure that the 
maximum intensity starts to decrease when the 
fluctuations of the wind velocity increase (see Fig. 2); 
then, starting with the values 2 2

v / 1V g  the maximum 

intensity increases owing to intensified turbulent 
diffusion of the heated air out of the region of the beam 
to a level corresponding to a linear medium. 
 

 
 

FIG. 2. The effect of fluctuations of the wind 
velocity on the characteristics of the laser beam 
kIjm, Rm, and Rc with P = 10, x = 1.5, and 
qT = 0: 1 – kIjm; 2 – Rm; 3 – Rc. 

 

 
 

FIG. 3. Change in the maximum intensity kIjm, 
the displacement of its coordinate Rm, and the 
displacement of the energy center of gravity Rc of 
the beam in time with P = 10 and x = 1.2: solid 
lines — kIjm; dashed lines – Rm; dot-dashed lines 
— Rc; qT = 0 (1, 2), qT = 2 (3), 2 2

v / V  = 0 (1) 
and 1 (2, 3). 

 
Figure 3 shows the calculations for the 

distribution of the average intensity of the beam in the 
nonstationary regime of thermal self-action. It is 
obvious from the figure that initially, at times 
t < 0.1, when the profile of the induced temperature 
is close to the spatial distribution of the intensity in 
the absence of self-action, the maximum value of the 
intensity decreases owing to defocusing. As heat is 
carried out of the region of the beam, however, 
defocusing on the leeward side decreases, which causes 
kIjm to increase and results in its subsequent 
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saturation at some level at t  3 (Refs. 12 and 13). 
Other characteristics of the beam also behave 
nonmonotonically as a function of time: Rm and gz,y. 
This effect is most clearly seen when there are no 
fluctuations of the velocity. Turbulent mixing of the 
air impedes heat transfer in the direction of the wind, 
so that in this case the emergence into a steady-state 
regime occurs more smoothly. For 2 2

v /V  = 1 kIjm 
and Rm (curves 2) are monotonic functions of the time 
and reach a steady level somewhat earlier. The 
presence of turbulent nonuniformities 1  in the 
medium does not qualitatively change the time 
dependence of the average intensity (curve 3). 
 

 
 

 
 

FIG. 4. Comparison of the calculations of the 
displacements of the coordinate of the maximum 
intensity and the energy center of gravity of the 
beam (solid and dashed curves) with calculations 
by the method of statistical tests (triangles, dark 
and light circles), performed in Ref. 3 (a) and 
Ref. 4 (b): (a) solid lines and dark circles – 

2 2
v / V  = 0; dashed lines and light circles — 
2 2
v / V  = 0.4; (b) solid lines — 2 11/16

NB x  = 0.55; 
dark and light circles show the results for the 
calculation of Rc with a given temperature field; the 
triangles show the results obtained by solving the 
self-consistent problem; 1 — x/P = 0.3; 2 — 
x/P = 0.16; 2

v 2 / .R P  


 
 

The calculations performed with the help of the 
algorithm described above and the calculations formed 
by the method of statistical tests are compared in 
Fig. 4.3,4 Figure 4b shows a comparison with the data 
of Ref. 4, where the fluctuations of the wind velocity 
 

were ignored ( 2
v 0  ); Fig. 4a shows a comparison 

with the results of Ref. 3, where the propagation of a 
laser beam under conditions of thermal self-action was 
analyzed neglecting the turbulent pulsations 1 0.   
One can see that the results obtained by the different 
methods are in satisfactory agreement with one another. 

Thus in this work a method for calculating the 
average intensity of a partially coherent laser beam, 
propagating in the atmosphere under conditions of 
thermal self-action, was developed based on the 
equation for the mutual coherence function of the 
field. The method permits taking into account 
simultaneously the effect of turbulent pulsations of the 
refractive index and fluctuations of the wind velocity. 
In this approach, in contradistinction to the method of 
statistical tests, the random processes occurring in the 
medium and at the laser output need not be modeled; 
this substantially reduces the computing time without 
lowering the accuracy. 

We have shown that even weak fluctuations of 
the wind velocity and the refractive index greatly limit 
the local focusing of the beam, which arises under 
conditions of wind refraction. 

The method developed permits tracing in time the 
evolution of the distribution of the average intensity of 
the beam under conditions of thermal self-action for real 
atmospheric conditions of propagation. This is important 
for analyzing beams with arbitrary pulse duration. 
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