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Formulas are derived for calculating the absorption coefficient of a dispersed 
medium, using measured values of the reflectances and transmittances of layers of finite 
thickness. Two methods for determining the absorption coefficient in the case of weak 
absorption are proposed. For the first method to be realized, it is sufficient to have one 
sample of finite thickness, for the second one two samples are needed: one of finite and the 
other of infinite thickness. It is shown that the second method permits one to determine 
the absorption coefficient with an error only slightly greater than the minimal one over 
a wider range of thicknesses than the first method. 

 
 

Asymptotic solutions of the direct problem of the 
transfer equation for thick layers lie at the foundation 
of many well-known methods for determining the 
absorption coefficient n of a scattering medium.1–3 In 
the case of weak absorption these solutions allow one 
to obtain simple analytic expressions for estimating 
the characteristics of the scattering layer from their 
reflectances and transmittances1,2,5 or the brightness 
coefficients at the layer boundaries.3,4 

In the analysis of the absorption characteristics of 
different dispersed media, including atmospheric aerosol 
deposited on a substrate, the layer cannot always be 
taken to be optically thick and in this case the above 
methods cease to apply. In this paper we consider a 
technique for determining the absorption coefficient of a 
dispersed medium. This technique has none of the 
limitations associated with the requirement of large 
optical thickness of the layer. The proposed approach is 
based on the use of integral equations which relate the 
brightness at the layer boundaries with the brightness 
body in the depth mode. The derivation of these 
equations is based on the fact that under certain 
conditions of illumination the transfer equation for a 
planar layer allows separation of variables in the 
azimuthalló averaged brightness coefficients.6 In this 
case the radiation intensity at the optical depth  = z ( 
is the extinction coefficient of the medium; z is the 
distance from the upper boundary of the layer) is given 

by Jr(, ) = ()åõð(–), where 
max

1
; 


 max 

and () are the largest eigenvalue and the 
eigenfunction of the homogeneous transfer equation 
corresponding to it, respectively:  
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expansion coefficients of the scattering phase function 
over the Legendre polynomials Pl(0); N is the number 
of expansion terms;  and 0 are the cosines of the 
incident and scattering angles;  is the probability of 
photon survival, which is equal to the ratio of the 
scattering and extinction coefficients. 

Let a plane-parallel layer of the scattering 
medium with optical depth 0 be illuminated from 
above by radiation whose angular distribution is given 
by the function J(, 0), and from below by radiation 
with angular distribution J(–, 0), where 0 = z0; 
z0 is the geometric thickness of the layer. Using the 
separation of variables of the functions J(, 0), we 
can write the following relations connecting the 
brightness coefficients at the layer boundaries (, 0) 
and (, 0) with the eigenfunction ( )   of the 
homogeneous transfer function: 
 

 
 

 (2) 
 

 
 

 (3) 
 

In weakly absorbing layers the brightness body in 
the depth mode is a linear function of 0 (see Ref. 1): 
 

 (4) 
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where the parameter  is defined by the properties of 
the medium and must be found by measuring the 
angular distribution of the radiation at the layer 
boundaries. 

Substituting Eq. (4) into Eqs. (2) and (3) and 
setting  = 1, we obtain the following relations, 
which are valid for layers of arbitrary thickness: 
 

 (5) 
 

 (6) 
 

where 
 

 
 

 
 

For the sake of convenience, we introduce the 
coefficients k = 2/1 and k = 2/1, which 
depend on the medium properties and the layer 
thickness. Formulas (5) and (6) then have the 
following forms: 
 

 (7) 
 

 (8) 
 

Let us now turn our attention to the fact that by 
virtue of the symmetry of (, 0) and (, 0) in the 
variables  and 0 (0) = ( = 1, 0) = (0,  = 
1) and (0) = ( = 1, 0) = (0,  = 1) can be 
determined by measuring the angular dependence of 
the brightness coefficients of the radiation exiting the 
layer for the case of normal incidence of the beam on 
the layer. From Eqs. (5)–(8) it follows that 
 

 (9) 
 

 (10) 
 

 (11) 
 

A relation between the parameters , , and  can be 
found using Eqs. (1) and (4). Substituting Eq. (4) 
into Eq. (1), multiplying both sides of Eq. (1) by , 
and taking the integral over  within the limits 
[–1, 1], we obtain 
 

 (12) 
 
Using Eqs. (11) and (12), it is possible to determine 
the absorption coefficient of the layer: 
 

 (13) 
 
i.e., n is determined from data on the geometrical 
thickness of the layer and the moments of the 
brightness coefficients at the layer boundaries. 

It is easy to see that relation (11) is transformed 
into the well-known formula 
 

 (13a) 
 
where q = (3 – x1)

–1. The parameters q and  
which enter into Eq. (13a) can be found from 
measurements of the values of the reflectance of an 
infinitely thick layer and of the transmittance of 
optically thick layers.3–5,10 Note that with such an 
approach, contrary to the approach proposed in this 
work, it is necessary to deal with not one but with 
several samples. 

Let us estimate the region of applicability of the 
obtained relations (9) and (10), using known 
calculational data on () and (). Calculations 
made with the help of data from Ref. 7 show that at 
  0.99 the error in the determination of t, , and n 
using formulas (9), (10), and (13) for the layer with 
optical depth 0 = 1 did not exceed 3.5% and decreased 
as   1. Calculations made with the help of the 
formulas used in Ref. 3 and 5 for such an optically 
thin layer at   0.99 indicate an error of about 50%. 
Numerical checks with the formulas used to determine 
the brightness coefficients obtained in Ref. 3 showed 
that the difference in values parameters  and t used to 
calculate the brightness coefficients () and () in 
Ref. 3, and in the values of these parameters given by 
formulas (10)—(11) did not exceed 10% for 

 = 00.25, 0 = 530, and 
2
3

x    to 
2
3

 (x1 value 

used in our work is related with 1x  used in Ref. 3, by 

the relation 1 1

3
.

2
x x  

Let us now turn our attention to the fact that the 
parameters k and k enter into Eqs. (7) and (8) as the 
coefficients of the parameter , the value of which is 
small. Therefore, one can expect that if the coefficients 
k and k are changed slightly by varying the optical 
parameters of the medium and the layer thickness, 
their influence will be small and, to determine the 
parameters  and t of the medium, one must only find 
the first moments of the brightness coefficients 1 and 
1. To determine the character of the variation of the 
coefficients k and k, the brightness coefficients () 
and () were calculated for layers of optical thickness 
0 = 1,2,3 and, for an infinitely thick layer from the 
data listed in the tables in Refs. 6 and 7. The results 
obtained indicate that for the medium with the phase 
function x() = 1 at 0  3 and for the infinitely thick 

layer in which x() = 1 + 
3
2 x1 at x1 = 0 and 2/3, 

the values of k change from 0.64 to 0.68. The 
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experimental results for several weakly absorbing 
objects are as follows: one layer of filter paper has 
k = 0.71 and k = 0.68; four layers of filter paper 
have k = 0.71 and k = 0.69; a BaSO4 layer with 
z0 = 0.5–6 mm has k = 0.72. 
 

 
 

FIG. 1. Dependence of n/n on 0 at k = 0.2 
and k = 0 (solid curves), k and k = 0.2 
(dashed curves) for x1 = 0, 1 –  = 10–4 
(curves 1, 4); x1 = 2/3, 1 –  = 10–2 (curves 2, 
5); x1 = 2/3, 1 –  = 10–4 (curves 3, 6). 

 
Let us consider the influence of the errors k and 

k of assigning the coefficients k and k on the relative 
error  
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Figure 1 shows the dependence of the error 
n/n on 0 for the scattering phase function 

x() = 1 + 
2
3 x1  It is clear from this figure that 

the relative error in determining n due to the 
inaccuracy in determining k increases with the 
thickness of the optical layer, remaining less than 
11% even for very weak absorption when 
1 –  = 10–4. Calculations show that for 
k = 0.02 the value of n/n does not exceed 1.2%. 
The error n/n (due to inaccurately set K) 
decreases with 0 increase and does not exceed 5%, if 
k = 0.2; and, if k = 0.02, then n/n does not 
exceed 0.5%. According to the above data, k and k 
vary only slightly for actual weakly absorbing 
media: k  0.71 and k  0.68 with errors 
k = k  0.01. For such media, n can therefore  

be determined by measuring only the transmittance 
1 and reflectance 1. 
 

 
 
FIG. 2. Dependence of n/n on 0 for the first 
procedure of determining n at k = k =0: 
1) 1 = 0.001, 1 = 0, x1 = 0; 2) 1 = 0.001, 
1 = 0, x1 = 2/3; 3) 1 = 0, 1 = 0.001, 
x1 = 0; 4) 1 = 0, 1 = 0.001, x1 = 2/3; 
5) 1 = 0.005, 1 = 0, x1 = 0; 6) 1 = 0.005, 
1 = 0, x1 = 2/3; 7) 1 = 0, 1 = 0.005, 
x1 = 0; 8) 1 = 0, 1 = 0.005, x1 = 2/3.  
1 –  = 10–4 (solid curves); 1 –  = 10–2 
(dashed curves). 

 
Let us analyze the influence on the accuracy of 

determining n of errors in the measurements of 1 and 
1. We calculate the relative error  
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as a function of the optical thickness 0, at k = 0.71 
and k = 0.68.  

Figure 2 presents calculational results for a 
medium with a spherical scattering phase function 
(curves 1, 3, and 7) and with the elongate scattering 
phase function x = 1 + , (curves 2, 4, 6, and 8). The 
dependences n/n(0) at 1 = 0 have a minimum. 
As  increases, its position shifts toward larger optical 
depths, and the minimal error grows. With increase in 
the elongateness of the scattering phase function x(), 
there occurs a small shift of minimum toward larger 0 
values and a decrease in the value of the minimal 
possible error in the determination of n. At 

1 –  = 10–4 and 1

2
3

x   the minimal error in the 

determination of n due to the measurement error 
1 = 0.001 is equal to 0n  5.6% and attained at 
the optical depth 0  1.2%. The dependence 
n/n(0) at 1 = 0 is monotonically decreasing and 



A.P. Ivanov et al. Vol. 2,  No. 10 /October  1989/ Atmos. Oceanic Opt.  867 
 

 

coincides with 
1

n

n 0 




 at small optical depths, as 

was confirmed by calculations of n using the 
experimental data from Refs. 8 and 9 for MS-14 
glass. The calculations performed show that with 
decreasing thickness of the glass layer the random 
deviations of n from its mean value increase. This 
result is explained by the fact that according to the 
estimates made in Ref. 9, for MS–14 glass 
1 –   2  10–5 and n  120 mm . Hence, layers 
of 0.3–6 mm thickness correspond to the left-hand 
part of the curve 
 

 
 

Let us consider yet another way of determining n. 
It consists in measuring not only the brightness 
coefficients () and () for the finite-thickness 
layers but also the brightness coefficient of the 
infinitely thick layer (). And indeed, in the limit 
t  0 (as follows from Eq. (8)) 
 

 
 
FIG. 3. Dependence of n/n on 0 for the second 
procedure of determining n at 1 –  = 10–4. 

 

 (14) 
 

where 
1

1
0

( ) .d         

Using this value of , we determine, first, t 
using formula (10) and, then, n from Eq. (13). 

Let us consider the error in determining n using 
this calculational procedure. It is evident that in this 
case it is determined by the errors incurred in 
measuring 1, 1, and 1. The contribution to the 
error due to the inaccuracy in measuring 1 at 
1 –  = 10–4 and x() = 1 is represented by 
curve 1 in Fig. 3. Curves 2 and 3 in this figure 
correspond to the contributions of the 1 and 1 
measurement errors to the error in determining n. 

Let us compare the errors in determining n in 
both procedures. As can be seen from Fig. 3, the 
errors caused by the 1 and 1 measurement errors 
decrease with increase in the layer thickness; 
moreover, for thin layers, the error caused by 
inaccuracies in the measurement of 1 is substantially 
smaller than that incurred in the first procedure (see 
Fig. 2). The error due to error in the measurement of 
1 for 0  115 is smaller than that incurred in the 
first procedure. As 0 increases, this error grows in 
both methods and contributes greatly to the total 
error in the determination of n. As the calculations 
show, the dependence of the error components on the 
absorption and elongateness of the scattering phase 
function x() have the same character as in the first 
method. As A decreases, all of the components of the 
relative error decrease, and the minimum in the 

dependence of 
1

n

n 0




T

 on 0 shifts toward smaller 

values of 0. As the elongateness of the scattering 
phase function increases, all components of the 
relative error also decrease, and the minimum of the 

dependence 
1

n

n 0




W

 on 0 shifts towards larger 

values of 0. 
 

 
 
FIG. 4. Dependence of (n/n) on 0 for the first 
and second procedures of determining n at 1 = 
1 = 1 = 0.001: the first procedure (curves 1 
and 3); the second procedure (curves 2 and 4). 
1 –  = 10–4 (solid curves); 1 –  = 10–2 
(dashed curves). 

 
In conclusion we present data on the total relative 

error in determining the absorption coefficient using 
both methods. To determine the total error, we use the 
well-known rule of addition of variances of random 

values. The dependence of the total error n

n 

 
  

 on 

ln0 for both methods for 1 = 1 = 1 = 10–3 is 
shown in Fig. 4. It can be seen from the figure that the 
minimal errors attained in the first and the second 
methods are similar, but the second method makes it 
possible to determine n with an error only slightly 
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different from the minimal one over a wider interval of 
layer thicknesses than is the case in the first method. 
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