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The question of the accuracy and the domain of applicability of the solutions of the 
transfer equation for the intensity of the scattered radiation which do not take account 
of the polarization state of the radiation is considered. Previously obtained numerical 
estimates of the differences of the solutions of the scalar and vector transfer equations are 
generalized and analyzed in the case of optically isotropic media and sources of wide 
unpolarized beams. A number of problems are clarified which pertain to sources of linearly 
polarized beams, where the question may be posed of using the scalar transfer equation 
instead of the vector equation. 

 
 

Beginning with the earliest works, the question 
has been raised in the theory of the multiple scattering 
of radiation of determining the domain of applicability 
and the accuracy of the solutions of the scalar transfer 
equation (ÒÅ) for the intensity which do not take the 
polarization state of the radiation into account. Earlier 
investigations addressed primarily the classical 
problems of the theory of radiation transfer in 
atmospheres and are bound up with a consideration of 
natural sources of unpolarized light.1–18 In these 
studies it was shown via numerical calculations that 
from the point of view of determining the energetic 
characteristics of the light fields, the solutions of the 
scalar ÒÅ differ little from the more accurate solutions 
of the vector ÒÅ (for the Stokes parameters), which 
take the polarization into account. This observation 
served as the basis for the extensive use of the scalar 
transfer theory (as an approximation) for the solution 
of a wide range of geophysical, astrophysical, and a 
number of other problems. At present the question of 
the accuracy of the scalar ÒÅ solutions is still of current 
interest due to the continuing development of the vector 
transfer theory, e.g., in application to laser sources. 

The present work is devoted to general aspects of 
the problem. The results of previous investigations of 
the accuracy of the solutions of the scalar ÒÅ are 
generalized and analyzed; the domain of applicability 
of the scalar ÒÅ in the theory of polarized radiation 
transfer is determined. The treatment is based on the 
Stokes parameters and Green’s matrix formalism. 

First recall that in the vector transfer theory the 
response of the scattering medium is described by the 
4x4 Green’s matrix of the (here assumed to be 
stationary) problem: 
 

 (1) 
 

where 0S


 and S

 are the Stokes vector parameters of 

the incident and scattered radiation, and the vectors 

0( )r r
 

 and 0( )n n
 

 define the point and the direction of 
observation (illumination). 

The matrix ˆ ( , )G r n
 

 satisfies the equation 
 



 
 

  
 
where the boundary conditions for Gik are defined by 
the problem. Íåãå r̂  is the gradient with respect to 

;r


 ( )ˆ n


 and ( , )ˆ n n
 

 are the extinction and 
single-scattering matrices of the medium (in this 
case, a homogeneous one);  and  are the angles 
between the scattering plane n n

 
 and the reference 

planes for Ĝ  in the directions n and ,n 1,9 and the 
matrix L(–) has the following nonvanishing 
elements: L11 = L44 = 1, L22 = L23 = cos, and 
L23 = –L32 = sin 2. 

Now let us turn from Eq. (2) to the scalar ÒÅ. 
In the case of illumination of the medium by natural 
light, the radiation intensity is determined by the 
first element G11 of Green’s matrix: S1 = G11I0(1). 
Let us represent the first equation of system (2)  
in the form: 
 

 (3) 
 

Equation (3) differs from the scalar ÒÅ 
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  (4) 
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( = 11, 1 11 11( , ) (1/ ) ( , ),a n n n n    
   

 G is the 
solution of Eq. (4)) by the presence of the source 
function B(G11) (i  1). Suppose that the scattering 
medium is optically isotropic, i.e., 
 

 
 

 (5) 

 

 (6) 
 

Then from Eq. (2) we obtain for the source 
function 
 

 



 
 

  (7) 

 
Let us note the physical meaning of B(G21, G31) 

(7). As is well known, during the scattering process the 
natural light from the external source becomes partially 
polarized (in Eqs. (2) and (5) G11  0 (i = 2, 3, 4) 
since 21  0). The linear polarization characteristics 
G11(i = 2, 3) which arise in the medium influence the 
intensity of each succeeding scattering event, beginning 
with the second, (12  0 (5)). The source function 
B(G21, G31) (7), (3) reflects these phenomena — it 
describes the sources of the "polarization distortions" of 
the intensity. 

It follows from what has been said that the 
intensity approximation in scattering theory that 
consists in using the solutions of the scalar ÒÅ instead of 
the vector one corresponds to the analogous 
approximation of the first element G11 of Green’s 
matrix. Let us call it for short the "scalar" 
approximation (SA). The solution ( , )G r n

 
 of the scalar 

ÒÅ, together with those characteristics that appear in 
the ÒÅ (4) — the extinction and scattering coefficients  
and , the photon survival probability  = /, and the 
scattering phase function 1( )a n n

 
 — describe the 

properties of the scattering of unpolarized radiation. The 
approximate character of the solution of the scalar ÒÅ is 
a result of the fact that it does not take into account the 
influence of the polarization of the scattered radiation on 
the intensity ( 11( , ) ( , ),G r n G r n

   
 because, strictly 

speaking, B(G1)  0 in Eq. (3)); at the same time, as 
estimates have shown (see below), for a large number of 
problems of practical importance, the difference 
(G11 – G)/G is small. Thus, 11( , ) ( , ).G r n G r n

   
 

Clearly, the SA as an approximation to G11 can be 
used to determine those energetic characteristics of the 
radiation that are described by the matrix element G11. 

For illumination of a medium by circularly polarized 
light (S0 = I0(1, 0, 0, S04) the total intensity S1, as 
in the case S04 = 0, is such a characteristic. Indeed, in 
Eq. (5) 14 = 0 and 14 = 0, and Eq. (2) gives 
practically vanishing solutions for G14. Assuming in 
Eq. (1) that G14 = 0, we have S11  G11I0, i.e., 
circular polarization does not affect the intensity. In 
the case of sources of linearly or elliptically polarized 
radiation (S0 = I0(1, S02, S03, S04)) SA should be 
thought of as applying to the first term ( G11) in the 
expression for S1(1). Introducing G = G11 – G and 
substituting G11 = G + G in Eq. (1), we can write 
 

 (8) 
 

Here in SA G  0. As to the term S1 it is 
necessary, as a rule, to take it into account. Only in 
individual cases, to be considered below, can the 
contributions of S1 to S1 be discounted. Thus, it can 
be seen that for light scattering in optically isotropic 
media the contributions to the intensity are governed 
only by the linear polarization characteristics: G11 (7) 
and S01 (8)  (i = 2, 3). 

Let us now analyze the data on the SA errors 
available in the literature. They were obtained for media 
of type (5) for the case of illumination by natural light. 
Only infinitely extended sources and media were 
considered. Error estimates for these various cases are 
summarized in Table I. As can be seen from Table I, 
the SA error is small (we will denote it by ). In 
addition, for media with a Rayleigh scattering law the 
error reaches values of the order of 10%, but for all 
other cases (larger-scale dispersed media) it is 
significantly less:   1–3%. Let us stop at this point 

and discuss the causes of the smallness of .  
The extent to which the polarization of the 

radiation influences the intensity in the scattering 
process depends on the conditions of irradiation of the 
scatterer. Note that the maximum ("one hundred per 
cent") effect takes place in the case of scattering by a 
dipole at an angle of /2 if the incident beam is 
completely polarized and unidirectional. If the medium 
is illuminated by unpolarized light, then the first 
correction to the intensity comes from the polarization of 
the singly scattered light, which is equal to 
P(1) = (b1/a1) (5). In addition, the given polarization 

is, first of all, not total: (1) 1P   ( (1) 1P  only in 

isolated scattering directions), and (1) 1P n  (6) is 

always the case inside the regions  ` 1 and 
 –  ` 1; second, the scattered radiation 
distribution is more or less diffuse. As a result of these 
two properties in combination with the vector nature 
of the polarization (1),P


 its influence on the intensity 

of double scattering turns out to be small. Thus, the 

error 
(2)(2)

11/G G    for (2)
11G  (the double 

scattering contribution) is not large, and the magnitude 
of the error   for G11 that takes both of the first two 
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multiplicities of scattering into account is even less: 
 

 
 

Here account has been taken of the fact that G(1) = 0. 
The SA error also remains small under E conditions of 
multiple scattering. Its accumulation from one 
scattering event to the next is "hindered" by the 
scattering properties themselves, namely, the 
quasidiffuseness of the radiation distribution and the 
conservation of zero polarization during forward 
scattering. 

Let us consider the dependence of the error on the 
scattering characteristics of the medium. As follows from 
Eq. (7) regarding the property G11 = G11(b11) (i = 2, 
3), the function B(G21, G31) is characterized by a 
quadratic dependence on the matrix element b1(x) (5) 
and, hence, on P(1). The values of   for various media 
differ because they depend on the properties of the 
polarization I and intensity distributions attendant to 

 each scattering event. The largest values of   are 
typical of media with the Rayleigh scattering law: 
 

 
 
In this case a substantial part of the radiation is 
strongly polarized during each scattering event. For 
example, the range of angles   [70°, 110°], where 
P(1) > 0.8, contains 53% of the radiant energy. 

The SA error for “non-Rayleigh” media is 
considerably smaller. This is caused by several factors, 
first of all, by the fact that the radiant energy is 
maximal inside the forward scattering region, where 
P(1) is small (relation (6)) for all optically isotropic 
media. For those media with scattering phase functions 
that are strongly elongated in the forward direction 
(haze, clouds, seawater, etc.) the error | is a 
negligibly small quantity of the order of the fourth 
small-angle moment of the highly elongated function 
of the "brightness body" type.19 

TABLE I. 
 

Data on the error of the scalar approximation of the energetic characteristics of the scattered 
radiation for illumination of the medium by a wide unpolarized beam. 
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For a cloudless atmosphere, including both a 
Rayleigh and a large-scale dispersed scattering 
component, and for other media of such type, 
dependences of Ð(1)(õ) close to the Rayleigh 

dependence are typical, but the magnitudes (1)
max 1.P   

The less is the quantity (1) 2
max( ) ,P  the less is the 

magnitude of the error .  For example, for 
(1)
maxP  = 0.7 ( (1) 2

max( )P  = 0.49) the magnitude of 
max

  

for the Earth’s atmosphere is less than half the 
magnitude of 

max
  for a Rayleigh atmosphere of the 

same optical thickness 0 or, rather, effective thickness 
*
0 0(1 ) ,      where  is the integral of the 

small-angle part of the scattering phase function (for 
the orders of magnitude of 

max
  consult Table I. 

The dependence of P(1)(x) for aerosol formations 
consisting of non-small and "non-soft" particles is, as 
a rule, alternating in sign. This means that there are 
more zeros of the polarization and that the polarization 
"azimuth" distribution is more diffuse than in the case 
of Rayleigh scattering. For such media the values of 
  are particularly small (haze, clouds) (see Table I). 

The comparatively small values of  in the case 
of Rayleigh scattering (in the table max  12%) are 
due, as was noted earlier, to the quasi diffuseness in 


n  

of the scattered radiation field. This is typical in most 
cases. However, if, as a result of the specifics of the 
geometry of the problem, the radiation field in the 
medium possesses a directionality toward the region of 
larger values of P(1), then the SA error may cease to be 
small. Let us consider such a situation. Let a Rayleigh 
layer be illuminated by a unidirectional point source 
directed normal to the layer (along the 


z  axis). In 

this case, as is well known, the singly scattered 
radiation at any off-axis point of the medium (one for 
which 


r  0 where 


r  is the distance from the beam 

axis) is concentrated within the radial plane passing 
through the point and the beam axis. In addition, at 
small depths  the energy density of the field is 
maximal inside the region of mean scattering angles in 

the vicinity of the direction 







 r
n

r
 perpendicular to 

the beam axis, i.e., where P(1) is large. For such 
properties of the single-scattering field the 

double-scattering intensity correction 
(2)

G

G

 
 
 

 is 

considerable in two directions, namely the direction 
perpendicular to 


n : 


n ( = 1) and the direction 

perpendicular to 


2n  ( = 0,  0, 
2

k
    


 

( = cos,  is reckoned from the 

z  direction at the 

point 


r , the azimuth Ô is reckoned from the radial 

plane). This is shown in Fig. 1, which presents results 

of a calculation of 
(2)

G

G

 
 
 

 at  = 0 (for the 

reflection problem). In the directions 


1n  and 


2n  the 
contribution of the singly scattered radiation vanishes 
(G(1) = 0), therefore the SA error for the total 
intensity in this case is not small, either. 
 

 
 
FIG. 1. The double-scattering contribution to the 

polarization correction 
(2)

G

G

 
 
 

 to the intensity in 

the problem of reflection of the radiation from a thin 
Rayleigh layer illuminated in the direction of its 
normal by a directed point source: 
1)  =  


r = 0.5 , 2) – 1; and 3) 5 for  = 1; 

4)  = 1 for  = 0, 
2


    

 

Let us analyze the estimates of  for a Rayleigh 
medium (Table I) and note the physical peculiarities 
of the formation of the SA error. In the problem of 
reflection of radiation from a layer of arbitrary 
thickness the values of G21 and G21 are determined 
mainly by the values of (1)

21G  and (1)
31G  (the 

single-scattering values),1 and the difference G due to 
them is determined mainly by the difference G(2) due 
to double scattering. In the transmission problem this 
property is fulfilled for 0 < 0.5. It is important to 
stress the alternating sign property of the SA error for 
the normalized angle intensity distributions. It is a 
general feature of media and radiative transfer 
problems, and it implies that the error for the integral 
characteristics is less than that for intensity and less 
than for diffuse sources than for directed ones. 

For large depths  in a semi-infinite medium (in 
the depth regime, as   ) the intensity S1 is given 
by the expression1,4,23 

 

(9) 
 

where 0 n Z  

 (Z is the medium axis), the functions 

G1k,0(, , 0) are the solutions of Eq. (2) and (5) for 
the zeroth azimutal harmonic, and the characteristics 
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1() 
1

1
1

1
( ) 1

2
d



 
    

 
  and  for Rayleigh scattering 

and the solution of the Milne problem u(u1, u2, 0, 0) 
were considered, e.g., in Ref. 1. The SA error 

11,0 0
0

11,0

G G
G


   is given by the formula 

 

 
 

where  =  – sc, 
sc

1

1

,
  

 


 
sc

1
u

1

u u
u


   

(“sc” denotes the "scalar" solution). Using data on  
and  (Refs. 5, 6, 12, and 13) and assuming that 
u(0)  (0) (Refs. 1 and 23), it is possible to 
estimate 0(, , 0). For  = 1, when the radiation 
field is completely diffuse and unpolarized,  = 0 
and  = 0. In this case 0 u ,    where u( 1)    

is a negligibly small quantity.1  For  < 1  < 0 (see 
Table I). This property can be easily understood if one 
takes into account the fact that in directions   1, 
where the field energy is maximal (for  < 1), the 
contribution of the Rayleigh-type polarization to the 
intensity is positive: G11,0(1) > G0(1). Hence it follows 
that the polarization correction for the integral angular 
field characteristics (the flux density) is also positive, 

i.e.,   
c

e e .
s

 Since  < 0,  0 e .f  As can be 

seen, under conditions of stationarity of the field 
properties in a medium with absorption the SA error 
grows ("accumulates") with depth. As   0 the 
radiation inside the medium becomes directed along the 
Z axis, where the polarization P(1) = 0, hence 
   0. The values of   are maximal inside the 

region   0.7, where   –0.009. For example, 
( = 0 = 1)  –0.15 at the depth  = 10. Here the 
intensity values G11,0  7  10–3. The properties of  
in the problem of transmission through a thick layer 
are similar. 

Generalizing the results of the above analysis, we 
may note the following. The use of the scalar ÒÅ 
solutions in transfer theory problems is justified, first 
of all, by the consideration of unpolarized radiation 
sources, which are, as a rule, extended or diffuse point 
sources, and second, by the consideration of optically 
isotropic media. The polarized radiation "born" during 
scattering in such media constitutes a relatively small 
part of the energetics and is quasidiffuse in its 
distribution character, whose properties guarantee 
comparatively small values of the SA error. 

In connection with the development of scattering 
theory applied to laser sources, it should be interesting 
to investigate the problem of the applicability of the 
scalar theory to the description of light fields created 
in a medium by linearly polarized light. It should be 
clarified, first of all, in which cases it is possible to 
ignore the polarization of the incident beam, i.e., when 
it is possible to neglect the small terms in the solutions 

that depend on the matrix elements G12 and G13, in 
particular, the term S1(G12, G13) in the solutions for 
(Eq. 8). This question is considered below. It is 
assumed that the medium is illuminated by a directed 
beam of arbitrary width and that the beam polarization 

2 2
0 02 03 1.P S S    

Let us first consider problems of axially 
symmetric type. Here the symmetry characterizes the 
geometry: the form of the medium and the direction of 
the illumination. In particular, let the layer be 
illuminated along its normal (0 = 1). For 0 = 1 the 
solutions of the vector ÒÅ (2) for the matrix elements 
G1k, k = 2, 3, as well as for their sources, the elements 
Gik (i, k = 2, 3) are the TE solutions for the second 

azimuthal harmonics, i.e., 
 

 
 

12

13

G
G

   
     

12,2

3,2

cos2

sin 2

G
G

f  

(the azimuth  is defined with respect to the beam 
axis).20,21 The contributions to the defined quantities due 
to those matrix elements vanish or are small in the 
following cases: 

1. When determining azimuthally averaged 
characteristics: average intensity, fluxes, illumination, 
albedo, field density, etc. 

2. When determining the intensity at such depths 
where because of scattering the light from the source 
has become depolarized, i.e., where max{Gik} ` G11, 
i, k = 2, 3. Knowing the decay coefficient 2 for the 
second harmonics Gik,2(i, k = 2, 3) and the 
coefficient  for G11,0 as    (9), one can estimate 
the order of magnitude of such depths via the condition 

2( )
0e ,P        where  is some fixed number. For 

P0 = 1 and  = 0.1 we have: for media with Rayleigh 
scattering  > 3 for  = 1 ( = 0, 2 = 0.826), but 
 > 38 for  = 0.58 ( = 0.903, 2  0.96). For a 
cloud (the Deirmenjian C1 cloud model) the values 
 > 14 for  = 1 (2  0.165) and  > 25 for 
 = 0.98 ( = 0.095, 2  0.187). Here we used the 
results of calculations of 2 which were based on the 
work in Refs. 19, 20, and 21. In those media, where the 
"brightness body" is highly elongated in the forward 
direction, the light becomes depolarized (if P0 = 1) only 
at large depths, where the field energy is very small.20 

3. When determining the field characteristics at 
small scattering angles in media with elongated 
scattering phase functions. In this region the matrix 
elements G12 and G13 are small because the component 
b1( n 1) (6) is small.20 The error can be estimated 
using the formula 
 

 
 
where  is close to 1 and P(1)() n 1 (6); 1 and 2 are 
the small-angle integrals of the functions 1() and 
1
2 [2() + 3()](5) (Ref. 20). The values of G12 and 

G13 may also be small inside the angle region 180. 
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In the case of slanted illumination of a layer by a 
polarized beam, items 1, 2, and 3 apply to the 
characteristics of the radiation at large depths since 
under such conditions the field properties conform to 
the axial symmetry properties of the medium. Account 
should be taken of the fact that for 0 < 1 the matrix 
elements G12 and G13 in the region of such depths are 
determined not only by the second harmonics 
Gik,2(k = 2, 3) but also by the azimuthally 
independent component G12,0. .This can be seen from 
the expression for S1 in the limit    (9). In 
Eq. (9), by virtue of the property D12(1) = 0 (5), (6), 
the following equalities hold: u2(1) = 0, 
G12,0(0 = 1) = 0. However, G12,0  0 for 0  0. 
The polarization correction S1(cos 2, sin 2) is 
governed by the decay of the source polarization with 
depth, and the correction S1(G12,0) is controlled by 
the light source parameter at the layer boundary. The 

relative value K =  12,0
02

11,0

G
K S

G
 does not depend on , 

, or . It remains invariant for integral values and is 
conserved as   . Thus, for 0 < 1 inside the region 
of moderate-to-large depths one can neglect the effect 
of source polarization on the energetics of the field in 
the cases 1, 2, and 3 under the condition that 
 

 
 

Note that K = 0 if the polarization angle of the 
incident light is 45 (S02 = 0), is negligibly small for 

1 – 0 n 1  22
0

1

1 ,
u

u

 
 

 
f  and for weakly 

absorbing media with highly elongated phase 
functions, for the Cloud C1 for example, K  0.1%.17 
For sea water, using results from Ref. 23, one gets 
Kmax  3%, 8%, and 11% for  = 0.9, 0.7, and 0.5, 
respectively. Here Kmax = K(0min), and, because of 
the light refraction at the water surface, 0min = 0.66. 
For a Rayleigh medium the value of K(0  0) is 
 10% for  = 1 and grows as  decreases. 

Inside the small-angle scattering region, for the 
case of slanted illumination of the medium a 
simplification is also possible. In the cases, in which 
the local beam axis in the medium can be 
approximately viewed as a local symmetry axis, the 
small-angle and azimuthally averaged (about the axis) 
energetic characteristics in the near zone can be 
determined without taking account of the polarization 
state of the beam. For media with absorption at  . 1 
(after the beam turns in the medium) an additional 
error  K(0; s02) needs to be evaluated. 

The correction 1

1

S

S


 (8) is small also in the trivial 

situation when b1(x) n a1(x) (5) (for some kinds of 
large-scale dispersed formations). 

The domain of applicability of the solutions of the 
scalar ÒÅ in the transfer theory of linearly polarized 

light practically coincides with the above-considered 
domain of applicability of the approximation 

1

1

S

S


  0 (8). The additional error of the SA, i.e., the 

approximation 
1

G

S


  0 in Eq. (8) is small in almost all 

of the cases noted. As estimates have shown (see Fig. 1), 
an exception may be the SA error in the problem of 
determining the intensity of the scattered radiation 
azimuthally averaged about the axis of a narrow beam, 
including the backward directions (with respect to the 
source), at small depths or in thin layers of a medium 
with Rayleigh polarization. Such an intensity is 
described, according to item 1, by the solution 
S1 = G11I0, and the possibility of passage to the solution 
S1  GI0 must be justified by special estimates. 
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