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The multipole formalism in the theory of intermolecular interactions is reviewed and 
the reasons for its success in applications in condensed media are analyzed. The question 
of the effective size of the multipoles is discussed. The effective length of the dipole 
moment of the water molecule is calculated on the basis of the Duncan-Pople model. The 
multi pole formalism is used for the first time to describe intramolecular interactions in 
the approximation of small electronic overlapping. The dipole and quadrupole moments of 
36 diatomic molecules and bonds were calculated, and the computed values agree fairly 
well with experiment. The mechanism of formation of the chemical bond in diatomic 
molecules is discussed on the basis of the dipole-quadrupole interaction of the atoms. 

 
 

INTRODUCTION 
 

The optics of atmospheric gases and vapors is 
determined not only by the structure and optical 
properties of their constituent molecules but also by 
intermolecular interactions (IMI). In the case of the 
atmosphere there are two characteristic peculiarities. 
First, the atmosphere contains primarily light 
fractions of gases and vapors, i.e., the atomic and 
molecular weights of the particles are usually small. 
For this reason diatomic and triatomic molecules with 
comparatively simple structure predominate among 
the molecules present in the atmosphere. Second, for 
completely understandable reasons, the earth's 
atmosphere is not a dense gas, such as that obtainable 
under laboratory conditions under pressures of 
hundreds of thousands of atmosphere. Therefore pair 
collisions of particles are most likely to occur in the 
earth's atmosphere, and this simplifies substantially 
the problem of applying the statistical theory. 

The two features indicated above should be. 
determining in the study of the processes involved in 
atmospheric optics. It is obvious that the power of the 
exact theory in describing the structure of molecules 
and IMI can be realized only if an appropriate 
approximation enabling numerical results to be 
obtained from the theory is made. In the case of atoms 
and simple molecules which interactby means of pair 
forces the multipole approximation is just such an 
approximation. Historically the multipole 
approximation appeared within the framework of 
electrodynamics, but it is also widely employed in 
modern quantum theory. 

H. Lorentz was evidently first to represent 
molecules as point dipoles. As far back as 1880, in his 
classical work,1 H. Lorentz took into account the IMI 
in a cubic lattice of dipoles and he derived an 
expression for the local electric field in such a lattice. 

The approach proposed by Lorentz was so popular 
that in works on solid-state physics, which laid the 
foundation of this science at the beginning of this 
century, the multipole formalism is standard in any 
discussion of IMI in a crystal lattice (see, for example, 
Ref. 2). One should not think, however, that the 
multipole formalism was employed in solid-state 
physics only at the dawn of its creation: the concept of 
dipoles and quadrupoles are necessary in both the 
modern literature in discussions of energy transfer 
processes in crystals and the theory of excitons with 
small radius.3 

Multipole representations play a special role in 
the description of the intermolecular forces, in 
particular, intermolecular interaction potentials. The 
classical works of Debye,4 Keesom,5 and 
Lennard-Jones6 explained not only the nature of 
Van-der—Waals forces in liquids and crystals, but 
they also made it possible to develop the theory of the 
dielectric constant of polar liquids in the language of 
multipoles. Prior to the works of F. London,7 
however, the origin of the attractive forces between 
nonpolar molecules was unclear. Wang made the first 
step toward an explanation.8 Soon after the creation of 
quantum mechanics he showed that an attractive force 
should exist between two hydrogen atoms and this 
force should vary as R–7 at large distances R. London, 
however, developed the quantum-mechanical theory of 
dispersion forces acting between any atoms and 
molecules; he showed that the leading term in the 
potential of the dispersion forces varies as R–6, and he 
derived a simple expression for the constant of this 
potential C6 in the approximation of equal energy 
denominators. The classification of attractive 
intermolecular forces is now conducted completely in 
the language of multipoles.9,10 

While the nature of attractive forces is explained 
by the interaction of electric multipoles, the repulsive 
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forces acting between molecules are determined by 
electronic overlapping arising at short distances R. 
These forces are traditionally described by the methods 
of quantum chemistry, in which a multipole expansion is 
usually not employed. Quantum chemistry also studied 
intramolecular interactions, in particular, the nature of 
the chemical bond between atoms and molecules. 

The division of IMI into long- and short-range 
became standard long ago.9,10 There arises, however, 
the nontrivial question: where are the conditions for 
long-range forces realized? In condensed media – 
liquids and crystals – the intermolecular distances R 
are close to the diameters of the molecules . In gases 
molecules practically do not interact in the process of 
drifting and in collisions they approach to distances R 
  owing to the deformation of the electron shells). 
Why then does the multipole formalism describe 
correctly in such a case the physical effects in all 
media? Moreover, the multipole language makes it 
possible to construct a quantitative theory, while the 
quantitative successes of quantum chemistry are 
limited to the simplest diatomic molecules. 

The purpose of this paper is to analyze the limits 
of applicability of the multipole expansion and to 
determine why it is successful in describing the IMI at 
short distances. In addition, for the’ first time an 
attempt is made to employ the multipole formalism for 
describing intramolecular interactions also. This can 
be done in the approximation of small overlapping of 
the electronic wave functions of the atoms. Although 
the molecules themselves cannot exist without 
electronic overlapping, an important question is what 
stimulates the appearance of the electronic 
overlapping itself under conditions of strong 
interelectronic and intermolecular repulsion. The 
calculation of the dipole and quadrupole moments of 
diatomic molecules, performed below based on the 
multipole formalism, demonstrates, first of all, the 
definite universality and applicability of this 
formalism not only at large distances R but also at 
short (intramolecular) distances. Second, this 
calculation answers the question posed above 
regarding the reasons for the appearance of a chemical 
bond in molecules. Finally, the discrepancy between 
theory and experiment shows the limits of 
applicability of the multipole description, i.e., it 
shows the contribution of spontaneous multipole 
fluctuations of the electron density of atoms to the 
formation of the electric moments of molecules and the 
contribution of exchange forces associated with the 
overlapping of the electron clouds of the atoms. 
 

MULTI POLE EXPANSION 
 

The interaction between atoms and molecules of 
any type, including chemical reactions, are basically of 
an electrical nature. For this reason the IMI can be 
described correctly if the Coulomb interaction of all 
constituent electric charges ei of electrically neutral 
systems (atoms and molecules) can be analyzed. 
 

The multipole formalism arises naturally in writing 
down the potential of an electrically neutral system at 
distances R outside the boundaries of this system. Let 
the charges ei be located at distances ri from some chosen 
center of the charge system. Then, according to 
Coulomb's law, the electric potential generated by the 
system at a distance R from its center is given by 
 

 (1) 
 

it is more convenient to expand the function 
  –1

iR r  

in a series (Neumann’s expansion), but in so doing two 
regions must be distinguished: a) ri < R and 
b) ri > R. 

It is important to stress that in both cases the 
expansion can be made regardless of the magnitude of 
the parameter r/R or R/r. The so-called one center 
expansion is obtained with the help of the spherical 
functions: 
 

 

 
 

 +

 
 

 (2) 
 

The first term on the right side of Eq. (2), which 
gives the expansion of the potential (1) in the region 
outside the boundaries of the charge system, leads to 
the multipole formalism. The second term could be 
termed an expansion in "inverse multipoles". 
Unfortunately the latter expansion is not widely used 
(though it is described in detail in Chapter 12 of Ref. 
11); it can, however, in principle, be used to describe 
intramolecular interactions. 

The relation (2) can be written in a more compact 
form with the help of the operator 


:  

 

 +

 
 

 (3) 
 

We expand the function 
 

j( )V R r  around the point 

R  in a series in powers of 


j :r  
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 (4) 
 
Multiplying this expression by ej and summing over all 
charges j of the second molecule we obtain an 
expression for the interaction energy of two molecules, 
i.e., the intermolecular pair interaction potential: 
 

 (5) 

 
The multipole expansion of the potential Vint is 

obtained by substituting Eq. (4) into Eq. (5) and using 

the first term on the right side of Eq. (3) for 


( ) :V R  
 

 
 

 (6) 
 

The following notation has been introduced in 
Eq. (6): 12 
 

 (7) 
 

is the tensor of the multipole moment of order n (p(

r ) 

is the charge density in the molecule); 
 

 (8) 
 
is the n-pole interaction tensor; and, [n] denotes contraction 
with respect to the n indices of two neighboring tensors. 

In applications only the first few terms of the 
expansion in Eq. (6) is usually employed: 
 

– 

 

 (9) 
 
where 
 

 (10) 
 

is the dipole moment of the system; 
 

 (11) 
 
is the quadrupole moment tensor; and, 
 

(12) 
 

is the dipole-dipole (DD) interaction tensor. The latter 
tensor is usually expressed as follows in terms of 
components: 
 

 
 

 (13) 
 

The expression  is a tensor of 

rank three 
 

 
 
 (14) 
 
Describing the dipole-quadrupole (DQ) interaction/ 

The multipole expansion (6) of the (IMI) 
interaction is valid when ri + rj < R, i.e., when the 
two charge systems do not overlap. Cases of partial 
and complete overlapping of the charges are described 
in Ref. 11. 

It is obvious that the number of terms to which 
the series (9) can be limited depends on how small the 
parameter (ri + rj)/R is. The convergence of the series 
(9) itself has for all practical purposes not been 
studied. If, however, the potential (9) is employed in 
the quantum perturbation theory, then when the wave 
functions of the interacting molecules do not overlap 
their interaction energy can be represented in the form 
of the series 
 

 (15) 
 
the first terms of which were first studied by London.7 
With regard to the series (15), it is known13,10 that it 
is asymptotic or semiconverging, i.e., it diverges 
(according to D'Alembert's criterion) for any finite R. 
For sufficiently large R, however, the experimental 
values- of E(R) can be described with good accuracy 
by the first few terms of the series(15), i.e., 
interactions of dipoles, quadrupoles, and octapoles. In 
this case there appears the surprising situation, but not 
uncommon in physics, when the first few terms of 
diverging series correctly describe physical quantities. 
 

EFFECTIVE DIMENSIONS OF MOLECULAR 
MULTI POLES 

 
As mentioned above, intermolecular interactions 

are described in the classical and quantum theory 
primarily in the language of multipoles. Of necessity, 
the multipole formalism is employed in the physics of 
condensed media, since IMI are significant precisely in 
such media. Multipoles can be validly used until the 
electronic overlapping in atoms and molecules becomes 
significant. Since the repulsion forces are connected 
precisely with this overlapping the relative role of 
overlapping can be estimated from the contribution of 
the repulsive forces to the total IMI energy. It is well 
known14 that in molecular crystals the contribution of 
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repulsive forces to the binding energy of the crystals is 
two times smaller than the contribution of attractive 
forces while in ionic crystals it is ten times smaller. 
Therefore in thermodynamic equilibrium in crystals 
(and especially in liquids) the effects due to electronic 
overlapping are relatively weak and the multipole 
expansion of the IMI potential Vint can be employed. 

Why then in such a case do dipoles, i.e., the first 
term of the multipole expansion (9), make the main 
contribution to physical effects? This question can be 
answered if the effective dimensions of the molecular 
multipoles are known. Ideal and real dipoles are 
distinguished.11. If the effective length of a dipole 
l n R (where R is the distance from the center of the 
dipole to the point at which its field is calculated), 
then the dipole is ideal, i.e., it is a “point" dipole. It 
is obvious that a n R (where a is the linear size of 
the quadrupole) and the contribution of the 
quadrupole to the multipole expansion (9) becomes 
much less than the contribution of the dipole. Thus 
the answer to the question posed is obvious; one need 
only calculate the effective length of the dipole l. 

First of all, we note that there are only three types 
of dipole moments of particles. First, the fluctuations 
of the electron density in atoms and molecules (owing 
to zero-point oscillations in quantum systems) create 
stochastic short-lived (instantaneous) dipole moments 
dins. They arise in dipole transitions of atoms and 
molecules into excited states; because of them 
attractive dispersion forces operate between particles. 
Second, an electric field E induces in neutral systems 
an induced dipole moment dind. Finally, molecules 
without a center of inversion have permanent dipole 
moments d0. In all cases the effective length of the 
dipole l is introduced based on the relation d = ql, 
where q are the effective charges located at the tips of 
the dipole. 

It is important to remember that in all three cases 
an electrically neutral system has a dipole moment 
only if charges of opposite sign are separated, i.e., the 
centers of gravity of the positive and negative charges 
do not coincide. The distance between these centers of 
gravity is the effective length of dipole: 
 

 (16) 
 

where the radius vectors 


qr  are measured from an 

arbitrarily chosen center. 
The displacement of the center of the electronic 

density r caused by quantum fluctuations must be 
small compared with the size r0 of the orbitals of 
valence electrons which determine the effective 
quantum-mechanical dimensions of atoms and 
molecules. Otherwise a quantum system would be 
unstable and it would ionize continuously. 

The dimensions lind of the induced dipoles are 
negligibly small. For example, placing a hydrogen 
atom in a strong field E = 3  104 V/cm, we find 

lind = indd E
e e


  = 1.4  10–13 cm, where 

 = 0.67  10–24 cm3 is the polarizability of the atom. 
Even if the field displaces not the entire electron 
charge e but rather only part of the electron density, 
the size of the dipole lind is several orders of magnitude 
smaller than the Bohr radius of the atom aB. In the 
field of a light wave the induced dipoles are indeed 
"point-like". This fact should be underscored, since it is 
often stated that the dimensions of induced dipoles are 
comparable to the dimensions of atoms and molecules. 

This error also occurs in the literature on the 
dimensions l of the dipoles of molecules which have a 
permanent dipole moment d0. In this case l0 is simply 
identified with the diameter of the molecule . For 
example, in the case of a heteronuclear diatomic 
molecule AB it is assumed that the length of the dipole 
l0 is equal to the length of the bond RAB. In so doing it 
is forgotten that even in the case of a strong ionic bond 
in a molecule A+Â– the highest electron density is 
concentrated not at the center of the ion Â– but rather 
in the space between the nuclei, which is what makes 
the chemical bond itself possible. For this reason the 
centers of gravity of the positive and negative charges 
once again turn out to be displaced relative to the 
nuclei and the distance l0 becomes less than RAB. 

We shall demonstrate what was said above for the 
example of the water molecule, for which we have the 
Duncan and Pople quantum-mechanical model of the 
electron density distribution (Ref. 11, ðð. 788–789). 
The coordinates of the center of gravity of charges of a 
given sing are determined by the formula 
 

 (17) 
 

In the case of the H2O molecule the dipole moment is 
oriented along the bisector of the valence angle, and 
the bisector is chosen as the z axis. The core of the 
oxygen atom, according to this model, has a charge of 
+6e and lies at the origin of coordinates (z0 = 0). Then 
the coordinates of the protons are zí = zH = 0.586 (in 
Å). The coordinates of the two pairs of binding 
electrons are z–2e = 0.355 and the coordinates of the 
two pairs of uncharged electrons are z–2e = –0.158. 
Then, according to Eq. (17), the coordinates of the 
centers of gravity of the charges are 
 

 
 

 
 
From here we find the length of the equivalent dipole 
moment of the H2O molecule from the formula (16): 
 

 (18) 
 
The diameter of the H2O molecule  = 2.76 Å,15 

whence l0/ = 0.017, i.e., the dipole is 57.6 times 
shorter than the diameter of the molecule. 
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Thus in all cases the effective sizes of the dipoles 
are many times smaller than the sizes of the particles 
themselves. This means that an electrically neutral 
system (molecule) behaves electrically in the space 
outside it as a point multipole, whose dimensions l are 
many times smaller than the distances R to the 
neighboring molecules. For this reason, under 
conditions when the electronic densities of the 
molecules do not overlap, the multipole formalism can 
be used without any restrictions for any R > . Since 
the parameter l/R is always very small, the first few 
terms of the multipole expansion already give good 
results for the IMI energy E(R) in Eq. (15). The 
effects of the electronic overlapping diminish with 
distance exponentially, as a result of which the 
conditions under which the multipole formalism is 
applicable already obtain in condensed media. 
 

MULTI POLES AND INTRAMOLECULAR 
INTERACTIONS 

 

Intramolecular interactions are responsible for the 
electric characteristics of molecules: polarizability, 
dipole moments, and quadrupole moments. The 
calculation of the electric moments of diatomic 
molecules is a fundamental problem, since for 
polyatomic molecules results can be obtained from the 
moments of diatomic bonds based on the vector 
additivity scheme. Unfortunately, in modern quantum 
chemistry it is practically impossible to calculate the 
moments of diatomic molecules and bonds with a 
reasonable number of trial basis wave functions, even 
with the help of fast computers.16 

The successes of the multipole formalism in the 
theory of IMI suggest that it can be used to describe 
intramolecular interactions. This can be done, as 
pointed out above, only if the electronic overlapping of 
the wave functions of the interacting atoms, which is 
responsible for the existence of the chemical bond 
itself, is neglected. Generally speaking, electronic 
overlapping is sometimes completely neglected 
(Hückel's method) in quantum chemistry also in order 
to obtain a physical result. 

Overlapping is itself, however, usually accepted as 
fact and question of why the electron density  
is concentrated in the space between the nuclei, i.e., why 
the atoms are attracted toward one another,  
is never asked. 

The multipole formalism gives an answer to this 
question. This will be discussed below. Addressing the 
problem of calculating the dipole and quadrupole 
moments of diatomic molecules and bonds, we must 
study the process of two atoms drawing together from 
large distances R up to equilibrium internuclear 
distances in the molecule Re. As long as there is no 
overlapping the attraction of the atoms is determined by 
the correlation of their electric densities which arises 
owing to the interaction of the instantaneous fluctuating 
atomic dipoles and quadrupoles. When the electron 
densities start to overlap the multipole interaction does 
not vanish completely, but remains owing to the 
nonoverlapping atomic cores. 

The indicates multipole interaction of the atoms 
induces in them dipole and quadrupole moments, whose 
quantum-mechanical average remains nonzero in 
second-order perturbation theory. Since we do not know 
how to take into account the effects of overlapping and 
exchange without knowing the wave functions of the 
atoms, we can study the dipole interaction of atoms at 
large distances R and extrapolate the obtained result to 
Re. In this manner we avoid the need to take into 
account the effects of overlapping, but the entire 
calculation will, naturally, be approximate. The 
discrepancy between the computed values of the 
moments and the experimental values characterizes the 
relative role of the ignored effects of overlapping. 

The fact that dipole and quadrupole moments 
appear in a pair of interacting atoms has in itself been 
known for a long time,9 but a quantitative theory has 
not been constructed. To construct such a theory we 
shall start from the interaction Hamiltonian 
 

 = 
 

 (19) 
 
associated with the first three of the expansion (9). 

The DD interaction tensor


(2)
12T  and the DQ 

interaction tensor  
 

(3) (3)
12 21T T  are given by 

Eqs. (13) and (14). 
In the approximation under study, when there 

are no effects due to electron exchange between 
atoms, the wave function (0) of the molecules in 
zeroth-order with respect to the interaction (19) need 
not be antisymmetrized with respect to each pair of 
electrons, i.e., the wave function can be written as a 
simple product of the wave functions of the atoms.9 
In this case, in the second-order perturbation theory 
with respect to DDĤ  the diagonal matrix element 

 


0 0Q  gives the quadrupole moment 

( )Q R  of 

the pair of atoms, and in second order with respect to 
the product of Hamiltonians DDĤ  DQĤ  the matrix 

element  


0 0d  gives the dipole moment 

( ).d R  

The wave function 0 of the ground state of the 
system in second-order perturbation theory has a 
quite complicated form, but the diagrammatic rules 
for the interaction of atom-molecule systems17 make 
it possible to write down the indicated matrix 
elements immediately: 
 

=
 

 

 

 
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+ 

 

 

 

 

 

+ 

 

 

 

 

 (20) 
 

 
= 

 

 

 

 

 

+ 

 

 

 

 

 

+ 

 

 

 

 

 (21) 
 

where 

d 12 is the dipole moment induced in the first 

atom by the second atom and 

d 21 is the dipole moment 

induced in the second atom as a result of the 
interaction with the first atom. Analogous notation 

was introduced for the quadrupole moments 

Q 12 and . 


Q 21. To save space the expressions for 


Q 21 and 


d 21 

are denoted by the symbol [l _ 2], which indicates 
that all indices 1 and 2 in the expressions presented 
must be interchanged. The energies of the ground and 
excited states of the atoms are denoted by Eo1 and E1 
(I = 1, 2), respectively. The matrix elements of all 
operators in the numerators are calculated using the 
wave functions of the atoms 1. 

It is obvious that the electric moments of 
interacting atoms, expressed in terms of the dispersion 
sums in Eqs. (20) and (21), strictly speaking cannot 
be expressed in terms of the observed characteristics of 
free atoms. This is possible in the approximation of 
equal energy denominators, introduced in quantum 
mechanics by Unsöld18 and widely employed in the 
theory of IMI.7,9-13 In this approximation the first 
ionization potential of the atoms are introduced: 
 

 (22) 
 

This makes it possible to obtain, by summing, an 
expression for the polarizability  of free atoms: 
 

(23) 

 

The further calculations are standard. With their 
help we obtain the following expression for the 

quadrupole moment 

Q 12 induced in the first atom: 

 

  

 

 (24) 

 

where 

n 12 is a unit vector oriented from the center of 

the first atom to the center of the second atom. 

Writing an analogous expression for the moment 

Q 21 

and transforming to the experimentally measured zz 

component of the total tensor 

Q  (the axis of the 

molecule is chosen as the z axis), we obtain the 
following expression for the quadrupole moment of a 
diatomic molecule: 
 

 = 
 

+
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 (25) 
 

Analogous calculations give the following 

expression for the dipole moment 

d 121 induced in the 

first atom: 
 

(26) 
 

Correspondingly, the dipole moment 

d 21 induced in the 

second atom is oriented along the vector n12. Since the 
vector d is oriented, as customarily done,9-11 from the 
negative charge to the positive charge the directions of 

the vectors 

d 12 and 


d 21 show that as a result of the DQ 

interaction of the atoms negative charge accumulates in 
their interiors in the space between the nuclei. 

Thus the DQ interaction, which already arises at 
distances R where there is still no electronic 
overlapping, provides the "impetus", consisting of 
redistribution of the electronic density along the line 
R12, for the formation of a chemical bond between the 
atoms. Since the DD and DQ forces are attractive the 
atoms draw together up to internuclear distances Re at 
which further attraction is determined by the 
electrostatic forces between the nuclei and the electronic 
density of the overlapping orbitals. The formation of 
antibonding orbitals can also be explained in an 
analogous manner, if the formation of the molecule in an 
excited state is studied. 

Without the discovery of the mechanism described 
above the increase in the electron density in the space 
between the nuclei must be postulated (as is done in 
quantum chemistry), and the fact of electron 
overlapping must itself be regarded as the starting point 
of the entire theory of the chemical bond. In addition, 
the reason that interelectronic repulsion does not always 
lead to accumulation of electron charge only on the outer 
side of the atoms (which does indeed occur with the 
formation of antibonding orbitals) is regarded as 
inexplicable. If it were not for the DQ force, the 
electron density would always be forced out of the 
internuclear space and the formation of bonding orbitals 
would be impossible. 

In a diatomic molecule A+Â– the dipole moment 

d  of the molecule must be oriented parallel to the 

vector 

n 21. For this reason d will be positive, if we 

define d(R) = d21 (R) – d12 (R). If, however, 
according to this definition d turned out to be 
negative, then this means that the charge distribution 
in the molecule has the form A–B+. Based on what we 
have said, we find from Eqs. (25) and (26) 
 

= 

 –
 

 

 (27) 
 
It is obvious that in homonuclear molecule this 

expression vanishes, i.e., the moments 

d 12 and 


d 21 

compensate one another. In a molecule of type AB, 
however, the dipole moment exists only to the extent 
that the atoms are different (asymmetric). 

The expressions (25) and (27) contain the 

parameter  which must be calculated 

quantum-mechanically. Since we have neglected 
exchange effects at the outset, it is logical to 
represent the wave functions Oi > (i = 1, 2) of the 
ground state of the atoms in the form of a 
nonantisymmetrized (Hartree) product of 
single-electron Slater orbitals (once again by analogy 
to what is done in the theory of IMI): 
 

 (28) 
 
where z is the number of electrons in the atom. 
Writing the single-electron orbitals in atomic units: 
 

(29) 
 
where n* and z* are the effective principal quantum 
number and the nuclear charge for a given orbital, 
which are defined according to Slater's rules,11 and 
taking into account the fact the wave functions (29) 
are orthogonal and normalized, the diagonal matrix 
elements of interest can be put into the form  
 

 (30) 
 
where we have transferred from summation over  
all electrons in the atom to a sum over all orbitals  
nl of the atom. The averages  can be  
easily calculated with the help of the wave  
functions (29): 
 

 

 

 (31) 
 

Thus under the approximations made above  
we were able to express quite simply the electric 
moments of diatomic molecules in terms of  
the well-known19 characteristics of free atoms:  
the polarizability  and the first ionization potential U. 

The values of the parameter  and the 

polarizability of the atoms calculated for the atoms 
studied are presented in Table I. 
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TABLE I. 
 

 
 

TABLE II. 
 
Theoretical and experimental values of the dipole 
and quadrupole moments of diatomic molecules. 

 

 
 

The values of the dipole moment d0 and 
quadrupole moment Q0 of a molecule in the position of 
equilibrium can be obtained from the corresponding 
expressions (27) and (25) for the functions d(R) and 
Q(R) by extrapolating them to the equilibrium 
distances R = Re between the nuclei.19 The 
theoretical and experimental values20–24 of d0 and Q0 
are compared in Table II. As we can see, the theory 
gives a quite good quantitative prediction of the 
electric moments of the diatomic molecules and bonds. 
It is significant that the predicted direction of the 
dipole moment vector d0 is inconsistent with the 
generally accepted values of the electronegativities of 
the atoms in only two of 36 cases (HCl and NO). In 
addition, in quantum-mechanical calculations the 
problem of the sign (direction) of the dipole moment is 
one of the most difficult problems.16 

It is also important to note that extrapolation of 
the results of the multipole formalism to ultrashort 
distances R = Re does not give physically meaningless 
large values of the d0 and Q0; they remain reasonable 
and close to their experimental values. This serves as 
additional justification for using the language of 
multipoles in the theory of IMI in condensed media. In 
addition, we can see that the electronic overlapping in 
diatomic molecules does not play a decisive role in the 
formation of the magnitudes of the electric moments of 
the molecules. 

Thus the multipole formalism describes 
quantitatively quite correctly both the intermolecular 
and intramolecular interactions in effects that are not 
related directly with electronic exchange and 
overlapping. 
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