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The effect of linear absorption on the dynamics of the initial pulse as it propagates in 
a weakly nonlinear medium under conditions of soliton formation is studied. It is shown 
by numerical methods that the process of decay of the initial pulse is stable. It was found 
that the soliton-like pulses into which the starting pulse decays, resulting in 
self-compression followed by spatial separation of the soliton pulses, merge. Some 
characteristic features of the phenomenon discovered, including the fact that it has a 
threshold with respect to the starting pulse width, are discussed. 

 
 

Optical models are an important link in the study 
of the physical characteristics of the propagation of 
electromagnetic radiation in different media. Although 
many models have now been created for studying 
different optical properties and characteristics of the 
medium (absorption and refraction coefficients, 
scattering matrices, etc.), work in this direction is far 
from completion. Models that reflect the characteristic 
features of the dynamics of propagation of an 
electromagnetic pulse should continue to be 
investigated; this will lead to a deeper understanding 
of the mechanism of interaction of radiation with the 
medium. This is also true with regard to different 
nonlinear phenomena that accompany the propagation 
of an optical pulse in the atmosphere. 

In our prior works1,2 we studied the propagation of 
an optical pulse in a weakly nonlinear (cubic) medium in 
the region of resonance absorption. The model 
describing the evolution of the pulse was constructed 
based on the nonlinear Schrödinger equation (NS) with 
a small perturbation. Under the conditions of the 
atmosphere the small perturbation can be replaced by 
linear losses. The equation has the form 
 

 (1) 
 
where s = t/T0; q = (z – ct)/z0; t is the time; z is 
the spatial coordinate in the direction of propagation 
of the pulse; z0 = (T0c/k)1/2; W = E/E0;  is the 
nonlinearity parameter; R is the perturbation, which 
also includes the transverse part of Laplacian; and, E 
is the field amplitude. The details of the derivation of 
Eq. (1) and an explanation of the notation employed 
in it can be found in Refs. 1 and 2 (see also the 
monograph Ref. 3 for a discussion of the derivation of 

Eq. (1)). In Ref. 2 the decay of the initial pulse into 
soliton-like pulses in the course of evolution in the 
absence of linear and nonlinear losses (the 
perturbation R(W) = 0) was investigated by the 
method of the inverse problem of scattering as well as 
by numerical methods. 

In this paper the investigations described in 
Ref. 2 are continued under the assumption that linear 
losses exist. The perturbation has the form 
 

 (2) 
 
which corresponds to linear absorption. Thus the 
problem can be formulated in the form 
 

 (3) 
 

where U =   W, ,     > 0. The initial pulse 
is assumed to be rectangular: 
 

 (4) 
 

According to Ref. 2 the main parameter of the 
problem is the area of the initial pulse 
 

 (5) 
 

The parameter b corresponds to the width of the 
pulse (4) and  is the amplitude. The number N of 
solitons formed is estimated in the method of the 
inverse problem of scattering as the number of points 
in the discrete spectrum of the associated problem 
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with the potential U(q) of the form (4). A detailed 
calculation was performed in Ref. 1. For fixed S 
 

 (6) 
 

where int () means integer part of the argument. 
A real pulse (the envelope) does not have steep 

fronts, but the direct analysis of a real pulse is 
complicated by mathematical difficulties. The model 
problem for a rectangular pulse can be analyzed1,2’ 
and the characteristics revealed by the numerical 
methods have a simple meaning: soliton formation, 
interaction of solitons, etc. The characteristics found 
numerically in Ref. 2 for a real pulse correspond to 
the dynamics of the model pulse; this makes it 
possible to understand and interpret the 
characteristics of the real pulse also. We point out 
once again that in this paper we continue our 
investigations of the model pulse (rectangle) in order 

to take into account the effect of additional factors 
(absorption by the medium and the width of the 
initial pulse). 

We shall now examine the results of the 
numerical solution of Eqs. (3) and (4) on a 
computer. Figures 1–5 show graphs illustrating the 
process of decay of a rectangular pulse under 
conditions of linear absorption. The interval of 
integration over the variable q is the same for all 
graphs: (0, 20). The time step s is equal to 
0.314  10–2. The graphs of |u| are presented for the 
following values of the variable s: s = 0 (1), 1.5710 
(2), 2.3565 (3), 3.142 (4), 3.9275 (5), and 4.7130 
(6). Figure 1 shows the dynamics of a pulse of area 
S = 2, for which according to Eq. (6) N = 1. The 
parameter  = 0.1. It is observed that a stable 
configuration is formed (curve 2, 3, and 4 in Fig. 1); 
this configuration decays owing to absorption (the 
curve 1 is the starting pulse). 

 
 

 
 

FIG. 1. 
 

         
 

      
 

FIG. 2. 
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Figures 2a and b show the dynamics of a pulse 
for S = 9, which, according to Eq. (6), corresponds 
to N = 3. For Figs. 2a and b the parameter 
 = 0.001. As absorption increases (in Figs. 2c and 
 = 0.1) the qualitative picture of the decay process 
remains the some; only the degree of the decay 
increases. We note that the decay process is observed 
even for large values of the absorption ( = 0.3), for 
which a perturbation R(U) of the form Eq. (2) 
cannot be regarded as small in Eq. (3). This 
indicates that the decay process is stable with respect 
to perturbations and confirms the conclusion drawn 
in Ref. 1 based on qualitative estimates. 

A more detailed analysis of the problem (3) 
makes it possible to study other aspects of the 
dynamics of the decay of the starting pulses and to 
draw additional conclusions. We performed a series 
of computer calculations of the dynamics of the pulse 
(4) determined by Eq. (3) for some fixed values of S 
in the case of constant linear absorption. In 
particular, we trace the dynamics of the pulse (4) 
with S = 8, which corresponds to the formation of 
two (possible three) soliton-like pulses in accordance 
with Eq. (6). The parameter  was set equal to 0.01. 
The calculations were performed for values of the 
parameter b (the width of the initial pulse) ranging 
from 2 to 12 with a step equal to 1. The value used 
for the absorption parameter  = 0.01 (which 
corresponds to the absorption coefficient 
  10–4 – 10–5 cm–1 for the frequency 
  1014 s–1 of a ruby laser; see estimates in Ref. 1) 
can differ by several orders of magnitude from the 
real values of the absorption coefficient for quite 
strong lines under atmospheric conditions. This 
indicates that in order of magnitude the values of  
studied (for which the effect is most clearly observed 
in numerical experiments) are consistent with the 
real conditions of absorption in the atmosphere. The 
conclusion that the decay of the starting pulse is 
stable should remain valid for real conditions of 
absorption in the atmosphere. In the estimates 
presented the pulse width  10–9 s. 

As an illustration Figs. 3–5 show graphs of 
U(sq) which reflect some characteristic features of 
the dynamics of the pulse (4). 
 

 
 

FIG. 3. 
 

 
 

FIG. 4. 
 

The graphs in Fig. 3 are presented for b = 3 
and s = 0 (1), 1.571 (2), and 3.142 (3). Two sharp 
peaks are observed. These peaks separate in space as 
s increases. Figure 4 corresponds to b = 7 and s = 0 
(1), 1.157 (2), 3.927 (3), and 6.284 (4). At first two 
soliton-like pulses are formed (curve 2 in Fig. 4). 
Then these pulses merge, which leads to 
self-compression (curve 3); the maximum value 
U = 2.42 is achieved when q = 10.5. Then the 
pulse once again separates into two peaks (curve 4), 
which separate in space as the time s increases. 
Figure 5 illustrates the dynamics of the pulse for 
even larger values of the initial pulse width. 
 

 
 
FIG. 5. The dynamics of a pulse for S = 8, 
 = 0.01, b = 10, and S = 1 (1), 500 (2), 1500 
(3), and 2000 (4) steps. 

 
We can draw the following conclusions fro» the 

numerical calculations and Figs. 3–5. When the 
threshold conditions of soliton formation are 
satisfied (for example, S = 8 is sufficient for the 
formation of several solitons) self-compression is not 
observed for narrow initial pulses. It can be 
concluded that a threshold value of this parameter 
exists. Comparing Figs. 4 and 5 shows that the 
moment at which the field |U reached a maximum 
value also depends on the parameter b; this moment 
occurs increasingly later as b increases. We note once  
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again that the existence of linear absorption does not 
destroy the process of formation of soliton-like 
pulses. On the contrary, the picture of soliton 
formation becomes clearer. This is explained by the 
fact that for   0 a nonzero relative velocity of the 
solitons along the q axis appears; this causes the soli 
tons to be more sharply separated in space. 

Thus the evolution of the pulse has been traced 
in detail by numerical methods. Three stages of the 
evolution of the signal were identified: decay of the 
starting pulse, interaction of the soliton-like pulses 
formed, and spatial separation of the latter pulses. 
Under certain conditions an effect similar to 
self-compression of a pulse arises at the second stage; 
this effect can apparently be explained by the 
nonlinear interference of soliton-like pulses. A 
qualitative investigation of the dynamics of this 
phenomenon showed that it depends on the width of 
the initial pulse and that it has a threshold as a 
function of this width. We note that although the 
nonlinear Schrödinger equation with a perturbation 
correction (2) cannot be integrated by the method of 
the inverse problem of scattering, the numerical 

solution of the problems shows that the decay process 
does exist and that it is stable; this fact is 
undoubtedly of interest for applied investigations. 

The question of the conditions under which 
solitons are formed and can be observed was 
discussed in Ref. 2. The energy and other parameters 
of the pulses can be estimated based on the results 
presented in Refs. 1-3 and additional investigations 
of the conditions the model under study describes the 
real atmosphere, but this falls outside the scope of 
this work and will be discussed in a separate paper. 
 
 

REFERENCES 
 
 
1. E.V. Lugin, and A.V. Shapovalov, Izv. Vysch. 
Uchebn. Zaved. SSSR, Fiz. No. 9, 102 (1987); ibid., 
No. 2, 36 (1989). 
2. V.A. Donchenko, M.V. Kabanov, E.V. Lugin, 
A.A. Nalivaiko, and A.V. Shapovalov, Atm. Opt., 1, 
No. 1, 67 (1988). 
3. G.M. Zaslavskii and R.Z. Sagdeev, Introduction 
to Nonlinear Physics (Nauka, Moscow, 1988). 
 


