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Approximate expressions for calculation of light scattering amplitude by optically “soft” circular 
cylinder of finite length have been derived in Wentzel–Kramers–Brillouin approximation for the 
case of light incidence perpendicularly to the cylinder axis. Scattering phase functions (or f11 element 
of the scattering phase matrix) of an infinitely long circular cylinder (rigorous solution) and of a 
finite-length circular cylinder calculated in Wentzel–Kramers–Brillouin approximation have been 
compared numerically. 

 
Investigation of light scattering by natural and 

artificial aerosols, ice crystals, suspensions of 
biological particles is yet of a significant interest, in 
spite of a great number of experimental and theoretical 
studies performed.1,2 Particles of such media often are 
non-spherical, so detailed study of theoretical 
characteristics of light scattering by such particles is 
quite important. 

For describing light scattering by optically “soft” 
(⎮m – 1⎮ << 1, where m is the relative refractive index 

of the particulate matter) particles of non-spherical 
shape it is convenient to use the approach by Rayleigh–
Gans–Debye (RGD), anomalous diffraction (AD)3

 and 

Wentzel–Kramers–Brillouin (WKB) approximations. 
The case of incidence of light along the symmetry  
axis of a circular cylinder of finite length in WKB 
approximation has already been considered earlier.4 

  Analysis of the amplitude and scattering phase 
function of a circular cylinder of finite length in the 
Wentzel–Kramers–Brillouin approximation for a light 
beam incident perpendicularly to the cylinder 

symmetry axis is presented in this paper. 
 

1. Light scattering amplitude 
 
Let us assume that the symmetry axis of an 

immobile homogeneous cylinder of the height H and 
radius a is oriented along the z-axis. Let plane 
electromagnetic wave falls along y-axis in Cartesian 
rectangular coordinates. 

Let us use the integral representation of the light 
scattering amplitude in WKB approximation5: 
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where s and i are the unit vectors along the direction 
of light scattering and propagation, respectively, 

2 2

1 –y a x′= −  is the input coordinate of the particle 

surface for the wave passing through the point r′, 
k = 2π/λ is the wave number, λ is the wavelength in 
the disperse medium, ei is the unit vector along the 
direction of polarization of the incident wave, 
T = 2/(m + 1) is the transmission coefficient; r′ is 
the radius vector of a point inside the particle. 

After integrating Eq. (1) over z in a cylindrical 
system of coordinates in a scalar form we have 
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where 

 ψ1(β, t, ϕ) = t(sinβ cosϕ + [m – cosβ] sinϕ), 

 ψ ϕ = − ϕ
2 2

2( , ) 1 cos ,t t  

and Δ = 2ka(m – 1) is the phase shift, β is the 
scattering angle read out from the forward scattering 
direction. 

At small phase shifts Δ << 1 one can completely 
ignore the value ψ2(t, ϕ) in comparison with ψ1(β, t, ϕ) 
in Eq. (2). Integration of Eq. (2) yields 
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Here J1(x) is the Bessel function of the first order, 
2 2( ) sin ( cos ) .p mβ = β + − β  

In the RGD approximation6: 

 
2 2

1RGD
( )( ) ( 1)

( ) ,
2 ( )

J kadka H m
f

kad

β⎡ ⎤− ⎣ ⎦β =
β

 (4) 

where 2 2( ) sin (1 cos ) 2sin( 2).d β = β + − β = β  
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As m → 1 and m2 – 1 ≈ 2(m – 1) for optically 
“soft” particles, the formulas for the light scattering 
amplitude in the WKB approximation at small phase 
shifts (3) and in the RGD approximation (4) 
practically coincide. 

Other approximations for calculation of the 
amplitude of light scattering in WKB approximation 
can be derived from Eq. (2), by expanding the phase 

2 2

2( , ) 1 cos ,t tψ ϕ = − ϕ  into a series, i.e., 
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In particular, if ψ2(t, ϕ) = 1 – t2/4, we have the 
first approximation. Finally, using the expansion from 
Ref. 7 we obtain: 
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are Lommel functions; 
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are the spherical Hankel functions of the 1st and 2nd 
kind. 

If 
2 2

2

cos2
( , ) 1– – ,

4 4

t t
t

ϕ
ψ ϕ =  we have the second 

approximation. 
Using Jacobi identity and after transformations 

we obtain from Eq. (2) that 
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Let us also present the integral Rn(c, b) in the form 
of the series: 
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where Γ(z) is the Euler gamma function. 
Numerical estimation of the error in calculation 

of the light scattering amplitude using WKB approach 
was carried out using the approximate formulas f 

(1)(β) 
and f 

(2)(β) by comparing those with the corresponding 
functions calculated directly by Eq. (2) at different 
phase shifts Δ and at different number of terms of the 
series in the Lommel functions S1(c, b) and S2(c, b). 
The results of comparison for the relative refractive 
index m = 1.1 are shown in Tables 1 and 2. The 
relative error here and below was calculated as 
(Fapprox/Faccurate – 1) ⋅ 100%. 

 
Table 1. Relative error in the light scattering amplitude 
f 

(1)(β) calculated using WKB approximate formula (6)  
in comparison with that calculated by Eq. (2)  

for a cylinder at different phase shifts Δ  
and scattering angles β 

Scattering angle β, deg. 

0 45 90 Δ

Re Im Re Im Re Im 

1 –0.36 3.52 –15.29 –131.60 –0.13 –0.78
2 –3.09 4.66 –18.89 62.35 –0.91 1.60 
3 –22.92 5.71 –38.68 29.44 –6.57 7.05 
5 105.85 –10.95 –136.28 5.03 13.05 0.41 
6 147.69 –73.55 –689.99 –17.38 54.36 26.65

 
Table 2. Relative error in the light scattering amplitude 
f 

(2)(β) calculated using WKB approximate formula (7)  
in comparison with that calculated by Eq. (2)  

for a cylinder at different phase shifts Δ  
and scattering angles β 

Scattering angle β, deg. 

0 45 90 Δ

Re Im Re Im Re Im 

1 –0.43 3.10 –5.03 –53.63 –0.84 7.24 
2 –2.37 3.14 –8.10 33.69 –3.46 3.74 
3 –11.51 3.18 –17.40 18.04 –14.78 4.94 
5 32.50 2.25 –68.18 11.17 31.68 –2.59
6 46.86 –1.49 –368.27 1.99 36.54 –1.62

 

The light scattering amplitude f 

(1)(β), in the first 
approximation, provides quite reliable results with 
the error less than 10% (both for real and imaginary 
parts) only at small phase shifts Δ < 3 for the forward 
scattering (see Table 1). The second approximation of 
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the light scattering amplitude f 

(2)(β) is also realistic 
at large phase shifts Δ < 10 (see Table 2). It is revealed 
that the approximate formulas for amplitudes f 

(1)(β) 
and f 

(2)(β) calculated by WKB approximation at Δ < 3 

have good convergence, in particular, one or two terms 

of the series are sufficient in the Lommel functions 
S1(c, b) and S2(c, b) with the error less than 1%. 

 

2. Light scattering phase function 
 
The light scattering phase function (or the element 

f11 of the scattering phase matrix) for natural light 
(polarization is random) was calculated by the 

following formula 
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where ⎜f(β)⎪2 is the square of the absolute value of 
the light scattering amplitude. 
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Fig. 1. Scattering phase function Ln[f11(β)/f11(0)] as a 

function of the scattering angle β for a finite cylinder 
calculated using the light scattering amplitudes: RGD 
(curve 1), WKB f(β) (2), WKB f 

(1)(β) (3), WKB f 

(2)(β) (4), 
and for an infinitely long cylinder (5) with the relative 
refractive index m = 1.1 at ka = 8. 

 

Calculations for an infinitely long cylinder (exact 
solution) were carried out by the algorithm from 

Ref. 8, and in the WKB approximation, i.e., using 
the light scattering amplitudes (2), (6), and (7). The  
 

scattering phase function was normalized to that for 
the forward scattering direction. 

Numerical comparison has shown that the value 
of the relative error in the scattering phase function 
calculated using WKB approximation, as compared 

with the exact solution for an infinitely long cylinder, 
does not exceed 9% in the range of scattering angles 
up to 25°. The scattering phase functions calculated 
using RGD and WKB approximations and the exact 
one calculated for an infinitely long cylinder with the 
relative refractive index m = 1.1 and ka = 8 are shown 

in Fig. 1. Obviously, the approximate amplitude f 

(2)(β) 

provides better approach of the WKB scattering phase 
function (see figure) to that by the exact solution, 
than the approximate amplitude f 

(1)(β). 
 

Conclusion 
 
The approximate formulas have been derived  

for calculation of light scattering amplitude 
calculated by WKB approximation for an optically 

“soft” cylinder of finite length, when the light is 

incident perpendicularly to the cylinder symmetry 
axis. The numerical results on the light scattering 
phase function of a circular cylinder in WKB 
approximation is compared with the exact solution for 
an infinitely long cylinder. The relative error of the 
scattering phase function for cylinder in WKB 
approximation, as compared with that by the exact 
solution for infinitely long cylinder does not exceed 
9% in the range of scattering angles up to 25°. 
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