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The electric dipole moment function of the OH radical in the ground electronic state X2
Π was 

ab initio calculated at short internuclear distances in terms of the united atom model. Calculating 
formulas were obtained in the first order of the perturbation theory, where matrix elements of 
perturbation and dipole moment operators were calculated within the LS- coupling approximation at 
wave functions of the united atom F. Energies and wave functions of the ground and excited states 
of the F atom for the 1S, 3P, and 1D cores were calculated using the Hartree–Fock self-consistent 
field method (HFSCF). The obtained results were used in refinement of the semiempirical dipole 
moment function of the OH radical.  

 

Introduction 

The OH molecule is resulted from a series of 
chemical processes in the atmosphere, among which 
the ultraviolet-initiated photolysis of water vapor and 
ozone molecules can be pointed out. Since the OH 
molecule is a high-active radical, it plays an 
important role in chemistry of the atmosphere being 
its natural cleaner. In this connection, various 
physical properties of the radical should be studied. 
The dipole moment μ(R) as a function of internuclear 
distance R is one of the principal characteristics of 
the OH radical. 

Despite the importance of the OH radical for 
atmospheric chemistry and ecology, there are few 
experimental works devoted to studying its dipole 
moment function.1–4 This can be explained by 
difficulties in measuring spectra of this chemically-
active molecule. Thus, the function of the OH radical 
empirical dipole moment, usually represented as the 
Taylor series in the neighborhood of the equilibrium 
position of nuclei Re, is defined no better than up to 
the third derivative.4 Ab initio calculations of the 
μ(R) function are presented much wider.5–13 In 
particular, Refs. 5–8 cite the calculations of the μ(R) 
function in the wide range of internuclear distances 
R from 1.2 to 10 a.u., where the OH molecule is 
represented by two individual interacting atoms. 
Nevertheless, such calculations in the range of short 
internuclear distances for the OH molecule are 
lacking, though they are urgent for refinement of the 
known semiempirical μ(R) functions14,15 describing 
the behavior of the OH molecule dipole moment in 
the entire internuclear range. 

The aim of this work is the theoretical 
calculation of the dipole moment function of the OH 
radical in the ground electronic state at short 

internuclear distances and the refinement of the 
semiempirical μ(R) function14 for the entire range of 
internuclear distances on the base of this calculation. 
 

Theoretical model 

The dipole moment function of the OH radical 
at short internuclear distances is calculated by our 
method,16,17 based on the united atom model.18,19 In 
this case, the dipole moment function for a molecule 
can be written as 
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where V0m and μ0m are the matrix elements of the 
perturbation and dipole moment operators of the 
molecule for wave functions of the ground  Ψ0 and 
excited  Ψm states of the united atom; E0 and Em are 
the energies of these states. 

Using the spherical tensor operator formalism, 
the perturbation and dipole moment operators in 
Eq. (1) can be written in the following way: 
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where Za and Zb are charges of atoms à and b; 
ZU = Za + Zb is the charge of the united atom; 
Ra = RZb/ZU, Rb = RZa/ZU, R = Ra + Rb (Fig. 1), 
and the function fk(s, t) is described by  
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Fig. 1. Coordinate system in the united atom model. The z-
axes coincides with the molecule’s axes and is directed from 
atom a to b.  

 

Then, in LS-coupling approximation for one-
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matrix elements of the tensor perturbation operator 
take the following form20,21: 
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where α, L, S, MS, ML are the quantum numbers of 
the atom ground state; n1, l1 and n2, l2 are the main 
and orbital quantum numbers for the electron initial 
and final states, respectively; N1 and N2 are the 
numbers of electrons in the n1l1 and n2l2 shells; Scor 
and Lcor  are the quantum numbers of a core state 
(the core includes filled in inner atom shells and the 

shell 1 1
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are the genealogical coefficients. The primed 
quantum numbers correspond to excited states. 

Equation (4) can be also used for calculating the 

matrix elements of the dipole moment operator µ1

0  by 

changing the integrand in a reduced matrix element 
in radial wave functions Rnl to r and setting k = 1 
and q = 0. 

When accounting for Eqs. (2)–(4), the dipole 
moment function of the OH molecule is essentially 
simplified:  
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where R2p and E2p are the radial wave function and 
the energy of the ground state 2p5(2P) of the united 
atom F; 

2 2n lR  and 
2 2n lE are, respectively, the wave 

functions and energies of its excited states for each 
ith allowed dipole transition. Coefficients ika  

(k = 1, 3) for these transitions are given in Table 1. 
Note, that for F atom the LS-coupling approach of 
angular moments is properly fulfilled. 

 

Table 1. Coefficients aik for the allowed dipole transitions 
of the F atom 
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Radial wave functions Rnl were computed with 
the Hartree–Fock method using the Froese-Fischer 
package.22 In this paper, the functions of the F atom 
ground and excited states (n2 = 3–9) were calculated 
for transitions presented in Table 1. Radial integrals 
were calculated with the method suggested in 
Ref. 23. 

Discussion 

Based on the above-described theoretical model, 
the dipole moment function µ(R) of the OH radical 
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was calculated within the internuclear distance 
variation range R = 0–0.4 a.u. (Fig. 2). 
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Fig. 2. Calculated dipole moment function of the OH 
radical at short internuclear distances: linear scale (a); the 
logarithmic scale (b); solid line corresponds to the ab initio 
calculation and the dashed line – to calculation by the 
formula µ(R) = AR3 with coefficient A = 13.2 à.u. 
 

The positive direction of the OH radical dipole 
moment corresponds to the polarity H+O–. As is seen 
from Fig. 2b, the dipole moment function at short 
internuclear distances (R ≤ 0.1 à.u.) has an 
asymptotical behavior µ(R) = AR

3 in good agreement 
with the theory.19 In this case, the calculated 
coefficient A equals to 13.2 à.u. We assume the 
function µ(R) obtained for the range R ≤ 0.15 à.u. to 
be correct (see Fig. 2a). 

The values of the µ(R) function calculated for 
R ≤ 0.15 à.u. were used for refinement of the 
semiempirical dipole moment function14 for the range 
R ≤ Re. In this case, the obtained function µ(R) was 
cubic-spline stitched with the empirical dipole 
moment function in the neighborhood of the 

equilibrium position of nuclei.1 Calculation results 
for the µ(R) function within the entire range R are 
shown in Fig. 3 and Table 2. 
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Fig. 3. Dipole moment function of the OH radical: this work 
(solid line); Ref. 14 (dashed line); calculated using the 
Taylor series with the coefficients defined in Ref. 1 (dashed-
dotted line); ab initio calculated7 (triangles); ab initio 
calculated5 (circles). 
 

Table 2. Dipole moment function of the OH radical (à.u.) 

R µ(R) R µ(R) 
0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 
2.2 
2.4 
2.6 

0.0000 
0.0338 
0.1244 
0.2481 
0.3786 
0.4895 
0.5544 
0.5879 
0.6190 
0.6455 
0.6653 
0.6751 
0.6689 
0.6443 

2.8 
3.0 
3.2 
3.4 
3.6 
3.8 
4.0 
4.5 
5.0 
5.5 
6.0 
7.0 
8.0 
9.0 

0.6022 
0.5461 
0.4811 
0.4129 
0.3470 
0.2875 
0.2362 
0.1401 
0.0802 
0.0448 
0.0248 
0.0078 
0.0028 
0.0013 

 

The analysis of Fig. 3 shows that the obtained 
function describes the dipole moment at short 
internuclear distances more correct than the 
semiempirical function.14 

Conclusion 

Basing on the ab initio calculations of the 
dipole moment function of the OH radical at short 
internuclear distances, the behavior of the function 
µ(R) was ascertained at R → 0, which allowed us to 
obtain more physically valid semiempirical dipole 
moment function within the internuclear distances 
range R ≤ Re. As a result, the complete dipole 
moment function, defined for the entire variation 
range of the OH radical internuclear distances will 
be more correct. Such complete function can be used 
for calculating the Einstein coefficients and 
probabilities of rovibrational transitions within a 
wide variation range of rotational quantum numbers. 
The dipole moment of the OH radical, being in 
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excited rotational states, can also be calculated using 
the obtained function µ(R). 
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