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The feedback effect of oscillators, interacting with the environment, on population of their 
quantum states and on thermal radiation is considered. Self-acting of the oscillators is simulated by 
the nonlinear operator in the Schrödinger equation. The oscillator stationary eigenstates are shown to 
be the most probable at permanent stochastic disturbance. Moreover, the change of quantum states can 
occur only as a jump. The Bose condensation of quantum states takes place in oscillators at 

T < �ω/(2k) (ω is the oscillation frequency; k is the Boltzmann constant). The numerical modeling 

shows that at a higher T the probability population distribution for oscillators interacting with the 
environment is rather close to the Boltzmann distribution. At relatively low T, radiation is caused 
mainly by quantum transitions between the nearest levels. When temperature increases, the radiation 
energy maximum of oscillators is shifted to the short-wave part of the spectrum.  

 

Introduction 

A quantum oscillator is the well-investigated 
object used for description of vibrations in physical 
systems. In actual systems, oscillators usually 
represent parts of complex formations such as clusters 
or Van der Waals molecules with a large collision 
cross section, which leads to their permanent 
stochastic disturbance. The same stochastic 
disturbance experiences any quantum system due to 
interaction with vacuum state of the electromagnetic 
field. Therefore, when describing the quantum 
oscillator states, it is necessary to take into account 
this permanent disturbance. This can be done when 
going  from the Neumann equation for the statistical 
operator of a complex system to the equation for the 
density matrix of a single oscillator.  

However, such reduction causes a necessity in 
prior representation of the collision integral owing to 
any model of the oscillator interaction with the 
environment. In a number of cases, when writing 
down the kinetic equations, it can lead to distortion 
of the information about the physical system. 
Besides, such approach has limited analytical 
opportunities due to  necessity to take into account a 
relatively large number of the differential equations 
proportional to the squared number of energy levels. 
In this connection, it is desirable to construct such a 
scheme for description of disturbed quantum 
oscillator states, which would conserve the 
computational capabilities of the Schrödinger 
equation. Nevertheless, the wave functions should be 
determined so that the mean values of physical 
quantities were close to the values obtained by means 
of the density matrix formalism.  

One of the possible approaches1–3 to solve this 
problem is considered in this paper, where a 
separated subsystem state interacting with the 

environment is described by the effective wave 
function averaged by the environmental effect. Such 
effective functions are the result of solution of the 
nonlinear Schrödinger equation. 

Schrödinger equation  
for quantum subsystem subjected  

to permanent stochastic disturbance  

Constructing the Schrödinger equation for  
effective wave functions is carried out by the 
Feynman method,4 which is one of the ways for 
description of wave propagation in the medium. The 
Feynman method considers the ψ-function (wave 
surface) as a source of secondary waves. Each 
secondary wave K(r, r1) (propagator) represents the 
sum connecting the start and terminal points by all 
possible ways and is written down as a functional 
integral 

 ( )1 1( , ) exp , , , ( ).
i

K A S t t D t

∞

−∞
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In Eq. (1), S(r, r1, t + τ, t) is the classical action of 
calculation along the path connecting the points r1 
and r; t  is the zero time, and t + τ is the finite time; 
A  is the amplitude. At such assignment of the 
propagator, it fits the law of the group 
multiplication: 

 ( ) ( ) ( )
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= ∫
3
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which allows writing down the integral equation 
equivalent to the Schrödinger equation for the wave 
function of a separated subsystem4: 
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In the Feynman method, each possible trajectory 
is a random polygonal line, whose realization is 
caused by quantum fluctuations. The functional 
integral from Eq. (3) allows one to include the 
permanent stochastic disturbance of the separated 
subsystem into reasons affecting the form of the path. 
Actually, if to consider every alternative path 
starting at r1 and finishing at r as a result of 
Brownian motion, the disturbing factors can be 
accounted for by the function 
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being the solution of the Fokker–Planck equation.5 
This function finds a joint probability distribution 
for the time τ/2 with one or another velocity at the 
given point of the space (it is assumed that this time 
is much less than typical times of change of the time-
regular quantum subsystem disturbance). In Eq. (4), 
C is the normalizing constant; p = βkT*/m, where m 
is the mass of the particle participating in Brownian 
motion; k is the Boltzmann constant, T* is the 
effective temperature of the environment. If collisions 
with the environment is the main factor determining 
the form of trajectories, hence, T* corresponds to the 
standard temperature. The parameter β is the 
viscosity of the environment. Henceforth, assume 
that β changes only adiabatically. Physically, the 
vector U0 is the ordered motion velocity of the 
Brownian particle in the environment: in case of 

normal diffusion, 0
2

τ

U  corresponds to the central 

moment of the Gaussian distribution function. 
The distribution (4) allows determining up to a 

factor the contribution to the final ψ -function of 

paths starting at the moment t at the point r1 and 
finishing at t + τ at the point r: 
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In Eq. (5), according to the standard 
algorithm,4 the action was changed by the product of 
the average Lagrangian L(r, U, t) at the time 

interval τ  by the time interval. Representation of the 
propagator in the form of Eq. (5) and averaging 

1exp , ,
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r U U

�
 over all possible 

velocity values are, as a matter of fact, equivalent to 
the functional integration in Eq. (3). Moreover, if 
the integration over velocity does not disturb the 
group properties of Eq. (2), then Eq. (3) 
automatically is transformed into the integral 
equation for the effective wave functions averaged by 
the environmental effect of the separated subsystem: 
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1 1 1, , , d .t K t

∞

−∞

ψ + τ = ψ∫r r r r r   (6) 

The particular form of the propagator in Eq. (6) 
is determined by the Lagrangian form. In the 
considered case, the Lagrangian has two peculiarities. 
First, an apparent form of the stochastic term cannot 
be pointed out since it disappears in the finite 
expression for the action. Actually, if τ  is much 
higher than the duration of the stochastic disturbance 
fluctuations, then the following equation is valid for 
the action   
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where T�  is the kinetic energy and ( ) ( )V t V t+
�

 is the 
potential energy of the subsystem; V(t) includes all 

the time-regular terms; ( )V t�  is the stochastic 
disturbance. Second, except for the standard terms, 
the Lagrangian should include the expression 
providing the normalization conservation of the 
effective wave function in time. Taking into account 
that the Lagrangian is determined up to a total 
derivative of any function of coordinate and time,6 
assume that, in a general case, this term can be the 
functional of Φ(ψ). 

Then  

( )

2

1 1

1

, , ,
2 2 2 2 2

, ,
2 2

m
L t q t

q
t

c

τ τ τ τ⎛ ⎞⎛ ⎞+ + = − ϕ + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

τ τ⎡ ⎤⎛ ⎞+ ⋅ + + − Φ ψ⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

U U
r U U r

U
U A r

  

(7)

 

where m and q are the mass and the charge 
characterizing the subsystem; c is the light velocity, 
ϕ(r, t) and A(r, t) are the scalar and vector potentials 
of the electromagnetic field. 

Substitution of Eq. (7) into Eq. (5) leads to the 
following expression for the propagator: 

(4)
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where B1 is the constant; /( ), /2.kT kT
∗ ∗α = β χ =�  

 The propagator (8) satisfies the condition (2) 
and, therefore, can be used for determination of the 
effective wave functions.  

The transition from the integral equation (6) to 
the Schrödinger equation is carried out owing to the 
Feynman standard algorithm. The right part of 
Eq. (6) [propagator is determined by the formula 
(8)] is interpreted as an integro-differential operator 
acting on ψ(r, t + τ). It is assumed that this operator 
is unity accurate to O(τ2). It is possible only at its 
action on functions satisfying the differential 
Schrödinger equation.4 In this case, the operator 
shows itself as unit when acting on functions 
satisfying the equation: 
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where P̂  is the momentum operator.  
The Schrödinger equation written down for the 

effective wave functions, in a general case, is 
nonlinear due to the functional Φ(ψ). The quantity 

0 0= −U U�  in Eq. (9) determines the movement 
velocity of the environment relative to the separated 
quantum subsystem, in the considered case this 
velocity is zero. By formation, ψ-functions satisfying 
the obtained Schrödinger equation correspond to the 
subsystem states averaged by the environmental 
effect. It is shown in Ref. 7 that, at Φ(ψ) = 0 and 

0 0,=U�  the same in form Neumann equation follows 

from Eq. (9) for the statistical operator ρ̂ = ψ ψ , as 

for the subsystem density matrix separated by the 
Lacks method8 at a density matrix reduction of a 
complex system, in which the second subsystem 
behaves like a Markovian thermostat.  

The standard unitary transformation9 leads the 
Eq. (9) to the form valid in the dipole 
approximation: 
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where E is the intensity of the external electric field; 
d is the dipole moment of the quantum subsystem.  
 In order to write down an apparent form of the 
functional Φ(ψ), we separate an effective operator of 
the subsystem disturbance by the environment in 
Eq. (10) (the term in the Hamiltonian disappearing 
at α → 0): 
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Since oscillators are stable formations, their 
wave functions should conserve the normalization in 
time. Therefore, the operator (11) should be 
Hermitian.10 Then matrix elements of the functional 
Φ(ψ) satisfy the equality 
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The real part of matrix elements ( )ψ Φ ψ ψ  is 

the energy of the subsystem interaction with the 
environment. Within the limits of the considered 
model, it is stipulated by the stochastic disturbance 
and at thermodynamic equilibrium of the subsystem, 
its value should be close to zero.  

The relation (12) is always fulfilled, if the 
functional Φ(ψ) has the form 
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Note that at such form of the functional, a part 
of solutions ψ(r, t) of Eq. (10) at Φ(ψ) ≠ 0 can be 
expressed through the wave functions ( , ),tψ r�  being 

the solution for the same equation2 at Φ(ψ) = 0: 
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In Eq. (14), C
n
(t) are the regular time 

functions, and ψn(r) are the eigenfunctions of the 
stationary Schrödinger equation: 
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where En is the separation constant. 
Nonlinearity of Eq. (10) is the natural 

consequence of reduction of the problem on complex 
system (separated subsystem and the environment); it 
is referred to the problem on state of the subsystem 
only. The functional (13) can be interpreted as a 
term accounting for the feedback, i.å., self-action of 
the separated subsystem through the environment. 
Substitution of the functional (13) into Eq. (9) leads 
in the Schrödinger equation to the Hamiltonian 
coinciding in structure with that of the written down 
in the stationary case when studying the molecules 
interacting with the environment11: 
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ˆ ˆ ˆ ˆ ,H H A B= +λ ψ ψ   

where 0Ĥ  is the Hamiltonian of an isolated 

molecule; Â  and B̂  are the operators, whose choice 
of the apparent form depends on the accepted model 
of the molecule interaction with the environment; λ1 
is the parameter characterizing the interaction 
intensity.  

Due to the nonlinearity of Eq. (10), among its 
solutions are such, whose coefficients Cn(t) in 
superposition are the irregular time functions3,8: 
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In particular, this fact can take place due to the 
time-irregular disturbance at  α fluctuations. These 
“additional” solutions determine the population of 
quantum levels. 

In order to make Eq. (16) the solution of 
nonlinear equation (10) at E(r, t) = 0, it is sufficient 
for Cn(t) to satisfy the differential equations:  
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As follows from Eq. (17), for filling numbers 
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In Eq. (18), the cosine argument is the phase of 

the complex number ( ) ( )*

.m k mkC t C t T�  If to consider 

the equilibrium state of the separated quantum 

subsystem 0 ,n
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∂⎛ ⎞
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 then a set of equations derived 

from Eq. (18) has the solution provided that only 
one of the numbers Pn (n = 1, 2, 3, …) is non-zero, 
i.å., the values of the filling numbers can be only 0 

and 1. Therewith, the condition ( ) 1
n

n

P t =∑  holds 

automatically. This means that the most probable 
states of the stationary quantum subsystem are those 
described by the Hamiltonian eigenfunctions of 
Eq. (15). However, the populations of different 
quantum levels can vary with time. 

When analyzing the variation dynamics of the 
populated level due to the feedback, it is necessary to 
follow simultaneously the behavior of all quantum 
levels including the unpopulated ones. For “pure” 
states ψ = Cn(t)ψn(r), Eq. (17) coincides in form 
with the well-studied equation12 describing the one-
parameter vector field family in the plane: 
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It is known that at ε < 0, point z = 0 is a 
position of the stable equilibrium. It means that if 
α essentially differs from zero, the unpopulated states 
of the separated subsystem are stable. Therefore, this 
subsystem state in the absence of E(t) can change 
spontaneously only if ε tends to zero. Moreover, some 
works12,13 show that since Eq. (19) has a peculiarity 
in the form of a fold, when ε approaches zero from 
the negative side at small but non-zero value of 
| ε | = δ, the available disturbances can reject the 
system out of the vicinity of the equilibrium position. 
Thus, the system will jump either to another distant 
equilibrium position, or to any limit cycle or to 
another more complicated attracting set. The 
possibility of such “catastrophe”13 is of great 
importance. It shows that when changing the 
environmental density at values of  α below a certain 
critical value, at which the Schrödinger equation (10) 
still remains nonlinear, a jump-like change in 
population of quantum levels is possible. 

State of oscillators subjected to 
permanent stochastic disturbance 

Dynamics of population in the quantum 
oscillator levels is determined by a set of parameters 
in Eq. (15). 

It was shown3 that in the one-dimensional case 
the oscillator wave functions satisfying Eq. (15) are 
expressed through the Hermitian polynomials of a 
complex variable: 
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(An
 is the normalizing constant, and / ;x mξ = ω �  x 

is the usual coordinate), and separation constants are 
the complex quantities: 
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(ω is the natural vibration frequency of the 
oscillator, n = 0, 1, 2, 3, …).  

As follows from Eq. (21), for diagonal matrix 
elements of the kinetic energy, the following 
equation is valid accurate to O(α2) 
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According to Eq. (20), when no time-regular 
disturbance exists, a change in equilibrium position 
for the unpopulated oscillator quantum level is 
possible only at 
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Therefore, the probability of changing this 
equilibrium state is proportional to probability for  α  
to fall in the interval between zero and αn due to the 
environmental density fluctuations of the oscillator. 
Since it is assumed that the system is subjected to 
the permanent stochastic disturbance, and 

n
α  is 

small, it is possible to write down approximately  
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ignoring the exact form of the  probability density 
f(α), assuming only f(0) = 0, where Ñ1 is the 
constant. 

However, the change in population of the 
oscillator quantum levels at α ≤ α

n can take place not 
always. To consider the influence of prerequisites for 
being out of the equilibrium position on population 
of energy levels, let us separate two its eigenstates 
ψn(r, t) and ψm(r, t), the transition between which is 
possible. Assume for definiteness sake that originally 
Pn0 = 1; P

m0 = 0. In the two-level approximation, 
Eq. (18) is a set of equations: 
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According to general properties of nonlinear 
systems on a plane,14 the stability of the stationary 
point depends on the right part of the system  of 
equations (24). In particular, the necessary condition 
for the absence of other equilibrium points nearby is 
the difference from zero of the Jacobian calculated at 
Pn0 = 1, Pm0 = 0: 
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The second parameter determining the properties 
of nonlinear system of equations is the superposition 
calculated under the same conditions  

 ( , ) ( , ).
n mP n m P n mF P P P P′ ′σ = + Φ  

Note that in case that the oscillator is subjected 
to the permanent stochastic disturbance accurate to 
small quantities of higher orders, the following holds 
for these parameters  
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The attractive sets in the case under 
consideration can be the closed curves in addition to 
equilibrium points. However, they appear only under 
some conditions. In particular, if originally n > m, 
there are no prerequisites for appearance of the closed 
curves. If the oscillator will be in the superposition 
state due to the disturbance, then, according to 
Eqs. (14) and (21), the wave function with time will 
tend to the wave function of low state conserving the 
time normalization. It means that in the case of  the 
“catastrophe,” the oscillator will simply jump to the 
lower state. It is naturally to interpret such a jump 
as a quantum jump.  

In case, when the lower energy level is 
populated, the situation is different. The oscillator 
output from the equilibrium position at Δ < 0 
proceeds along the trajectory in the form of a loop, 
whose stability depends on a sign of σ  (Ref. 14). 
When σ  is positive, the loop is unstable, and in this 
case, the quantum jump can takes place. If σ  < 0, 
then, even if the loop passes through another 
equilibrium point (Pn = 0, Pm = 1), the oscillator will 
return in the initial position. Hence, the oscillator 
can pass only into the upper levels, whose quantum 
numbers satisfy the condition  

 2 1/2 2 /( ).m n≤ + + χ ω�  

This relation points out that when the effective 
temperature is below the limit 

 * /(2 )T k< ω�   (25)  

the Bose-condensation of the oscillator states should 
be observed.3 

The distribution of population of different 
quantum states can be found by numerical modeling. 
In this case, it is sufficient to determine the 
ensemble-averaged population probability for each 
energy level caused by quantum transitions. 

According to Eqs. (22) and (23), for the 
probability of the oscillator transition from the 
populated n-level to the vacant m-level to accuracy 
of factor 1/Z

n, the following equation is valid 
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Since the oscillator transition from one level to 
another is not a determined process, Eqs. (26) and 
(27) are also valid in case, when the oscillator finally 
returns to the initial state if there are prerequisites 
for the state change. Therefore, Z

n is the statistical 
sum: 
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One of the possible calculation algorithms for 
the population probability is the following. First, the 
arbitrary distribution of population probability P

m is 
given for the oscillator levels mmax (mmax is the 
quantity of discrete quantum states taken into 

account) (naturally, 
max

0

1

m

m

m

P

=

=∑ ). Then, accidentally, 

some level number n is chosen under the assumption 
that the transition is possible from it, and the change 
in P

m (m = 0, 1, …, mmax) is calculated.  
In case of a large number of oscillators in some 

ensemble, the prerequisites for the oscillator output 
from the equilibrium position do not depend on the 
number of the “filled” state; and they are formed not 
for all ensemble oscillators in the nth energy level. 
Therefore, accounting for the Bayes theorem,15 the 
probability change ΔP

m of the mth quantum 
population level is calculated by the formula 
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where ν is the uniformly distributed random number 
within [0, 1]. 

The found values of ΔPm
 are added to P

m
,
 
which 

results in a new distribution, for which the same 
procedure is repeated. Summing up the obtained 
values of Pm

 for each level, after a rather large 
number of iterations, the mean value of 〈Pm

〉 is 
calculated for the population probability of each 
energy level: 
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It is the number of iterations; ( )m i
P  is the current 

value of population probability for the mth level. 
The distribution obtained as a result of these 

calculations is the sought one, averaged over the 
oscillator ensemble by the probability distribution of 
the quantum level population of the oscillator 
interacting with the environment.  

Results of mathematical experiment 

Figures 1–3 present the results of numerical 
modeling by means of the above-described algorithm 

for different values of y = �ω/(kT). The found 

probability distribution of the energy level 
population is shown by the circles; a solid line with 
small squares denotes the Boltzmann distribution is 
presented for comparison. All distributions are 
resulted from averaging of 107 ensembles calculated 
at mmax = 200. 
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As it follows from Figs. 1–3, the permanent 
stochastic disturbance and interaction of oscillators 
with the environment leads to much higher 
population probabilities for the oscillators of lower 
levels than for upper ones. Moreover, the found 
probability distributions are close enough to the 
Boltzmann distribution. Note that numerical 
modeling at y > 2 has shown, as it was expected, the 
Bose-condensation of the oscillator states. 
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Fig. 3. 

 

Transitions from upper quantum levels to low 
ones depend on the electromagnetic energy radiation. 
Therefore, the above mechanism of energy levels 
population allows one at the set value of y to 
determine the spectral distribution I(Δn) for 
spontaneous radiation of the weakly connected 
oscillators (Δn is the difference between level 
numbers). In this case it is sufficient to estimate the 
contribution into the radiation energy of each 
possible transition from the upper energy level to low 
one. Figures 4–6 present the corresponding 
dependences calculated at the same parameters as in 
Figs. 1–3. 

As it follows from the presented dependences, at 
relatively high values of y, the main energy is 
emitted at transitions between close levels. However, 
as the temperature grows, the radiation maximum is 
shifted closer to the short-wave region. In addition, 
based on the numerical experiment data for the 
wavelength of the radiation maximum, one can write 
down the approximated empirical relation: λ = β/T, 
where β = 1.7 ⋅ 10–2 m ⋅ K. 
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Conclusion 

Thus, as follows from the obtained results, the 
permanent stochastic disturbance and interaction of 
oscillators with the environment are the main reasons 
for the physical systems close to oscillators by its 
properties, that they are in the states coinciding with 
eigenfunctions of the stationary Schrödinger 
equation, and their transitions from state to state 
occur in the form of a jump. The effect of these 
factors causes a higher population probability for the 
lower energy levels than for upper ones. 

In conclusion, let us note a consequence of Bose-
condensation of oscillator states, subjected to the 
permanent stochastic disturbance, which can have an 
applied significance and requires an experimental  
 
 

verification. The condensation does not depend on 
whether oscillators collide with each other or with 
other particles, for example, with electrons. It causes 
the ceasing of energy exchange between the 
environment and vibrational degrees of freedom of 
oscillators. This circumstance points out to the fact 
that substances with free charge carriers and close to 
the system of weakly connected oscillators by 
properties, when traversing by the electric current at 

a temperature below T = �ω/(2k), should have the 

minimal energy for heating (ω is the frequency of 
natural vibrations of the oscillator material).  
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