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The problem of the second harmonic generation (SHG) is considered in the preset-field 
approximation for the scalar «ooe»-synchronism in a KDP crystal for the fundamental radiation at 
λ ≥ 0.53 μm. It is shown that the maximum of nonlinear conversion efficiency is reached at focusing the 
incident beam into the crystal using two crossed cylindrical lenses with the focal lengths being the 
unique optimal pair. In this case, wave detuning should be optimal as well. It is proved that the use 
of optimal cylindrical focusing increases the efficiency by approximately 25% as compared to the 
optical spherical focusing. Empirical expressions are proposed for approximate estimates of the 
optimal values of focal lengths and wave detuning. It has been revealed that the accuracy of these 
estimates keeps tolerable even if the initial parameters vary in quite a wide range. 

 

Introduction 

Within the framework of this study, we consider 
the steady-state second harmonic generation (SHG) 
mode in a homogeneous uniaxial crystal with a 
quadratic nonlinearity. Assume that the laser beam 
that propagates along the Z-axis of a Cartesian 
coordinate system is a spatially coherent and 
monochromatic radiation. Besides, restrict the 
consideration to the preset-field approximation and 
the scalar «ooe»-interaction. In this case, the slowly 
varying complex amplitudes A1(x, y, z) at the 
fundamental frequency and A2(x, y, z) at its second 
harmonic are solutions of the following equations1,2: 
 

  
2 2

1 1 1

2 2

1

1
0,

2
o

A A A

z ik x y

⎛ ⎞∂ ∂ ∂
+ + =⎜ ⎟

∂ ∂ ∂⎝ ⎠
 (1a) 

  
2 2

22 2 2 2

12 2

2

1
e ,

2
ki z

e

A A A A
i A

z x ik x y
− Δ

⎛ ⎞∂ ∂ ∂ ∂
+ ρ + + = σ⎜ ⎟

∂ ∂ ∂ ∂⎝ ⎠
 (1b) 

where  
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θ is the angle between the optical axis of the crystal, 

lying in the plane XZ, and the Z-axis, 2 12
e

ok k kΔ = −  

is the wave detuning, ρ is the birefringence angle,  
σ is the coefficient of nonlinear coupling. 

The Green function of a homogeneous uniaxial 
medium is known (see, for example, Ref. 3), which 
allows Eq. (1) to be presented in the following form: 
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where T2 is the Fresnel coefficient for the normal-
incidence refraction at the exit facet of a crystal, 
tL = z0 + (L – t)/n under the assumption that 

( )
o

n n≈ ω ≈ ω θ(2 , )e

n ; we have taken into account 

that the field (2) passes the distance L – z in an 
anisotropic medium and it refracts at the entrance 
and exit facets of the crystal.4 

Equation (2) defines the SH field that arises at 
a distance z from the entrance to a crystal with the 
length L and then linearly propagates to the 
observation plane 0 0L L z= + . If the distance z0 from 
the crystal to this plane tends to infinity and the 
field at the fundamental frequency forms a Gaussian 
beam, then Eq. (2) easily reduces to the so-called 
Boyd–Kleinman formula.5 

The method of more simple and easy-to-use 
presentation of the considered solution has been 
discussed in Ref. 6. If tending z0 to infinity, as in 
Ref. 5, solution to Eq. (1) is proposed to be sought 
in the following form 
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is the radius of curvature of the wave front. In this 
case, Eq. (2) is replaced by 
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Δf is the distance between the waist plane and the 
crystal center (Δf > 0 if the beam is focused before 
the crystal center. In the given case we don’t go 
beyond the variant that |

 

Δf | ≤ L/2, which is most 
interesting in practice). 

The main advantage of this result, against that 
given by Eq. (2), is that for its use the solution (1à), 
[i.e., the form of Eq. (3a)], has to be known only in 
the L0-plane but not in all the crystal volume, as in 
the case with Eq. (2). This is not very important for 
Gaussian fields, while in the case of beams with more 
complicated amplitude forms the transition to Eq. (4) 
allows one to obtain the analytical result in simpler 
quadratures and correspondingly to shorten the time 
for its numerical computation. 

In contrast to Eq. (2), Eq. (4) is obviously an 
approximate solution of Eq. (1). Therefore, finding 
the limits of its applicability is the first goal of this 
study. The second goal is to formulate the conditions 
providing maximum efficiency of the SHG process. 
All computations will be conducted for the KDP 

crystal described in Ref. 7. In this study, we restrict 
ourselves to the spectral range from 0.530 to 1.06 μm 
where the optimization problem of a nonlinear 
process is most easily solvable. The peculiarities of 
the SHG at angles of synchronism close to 90° 
(fundamental radiation wavelength close to 
0.5174433… μm) will be considered in a different 
paper. 

Assume that the laser radiation is focused to a 
nonlinear crystal by two crossed cylindrical lenses Lx 
and Ly. The Lx lens (focal length fx) focuses the 
beam in the principle optical plane (XZ coordinate 
plane), while the Ly lens (focal length fy) in the 
plane YZ. From Eq. (3a) it follows that in the most 
general case, the amplitude 1 0( , , )U x y L  can be 

presented, accurate to a constant phase shift, by the 
following approximation6: 
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where 0 8 / ,A P cI= π  P is the laser radiation power 

measured in the plane L0; 
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For all the following computations the power 
P = 1 kW. If fx = fy (ax = ay) then the focusing is 
considered as spherical. In the general case (fx ≠ fy), 
lenses Lx and Ly are to be shifted along the Z-axis so 
that their waists are in the same plane. It is for this 
reason that the radii of curvature of the wave front, 
in Eq. (3), turn out to be coincident in the planes 
XZ and YZ. It is assumed that mx and my can take 
arbitrary positive values. However, one should keep 
in mind that simultaneous increase of both the 
coefficients mx and my and the focal lengths fx and fy 
can result in an essential deviation of the 
approximation (5) from the exact representation of 
the field amplitude at the fundamental frequency. In 
case of such a situation, one should still use Eq. (3a) 
(Eq. (4) remains valid) and replace Eq. (5) by the 
exact solution (1a) in the observation plane L0. This 
will not add any difficulty more, but the amplitude 
U1(x, y, L0) in this case can of course be set only 
numerically. 

The cylindrical laser radiation focusing to a 
nonlinear unaxial crystal (i.e., the conditions when 
the beam divergences in two mutually orthogonal 
planes differ essentially) has been successfully used 
for a long time. The most popular arrangement of 
cylindrical and combined focusing systems can be 
found in Ref. 1, as well as the detailed bibliography 
on this problem. Nevertheless, in these investigations 
(mostly experimental) we have found no 
recommendations on which focusing system is to be 
used to provide maximum SHG efficiency of a laser 
radiation with arbitrary specified parameters. 
Development of a technique for easy-to-make 
estimates of this type is the principal result of the 
research presented in this paper. The general 
theoretical aspects of the technique have been 
considered in Ref. 6, while the practical 
recommendations formulated following Ref. 6 are 
given in this paper. 

1. Check of the approximate solution  

To check the solution (4), consider the 
following task. Assume that the SHG is realized in a 
crystal with the length L = 4 cm. The laser beam has 
the wavelength λ = 0.5782 μm (one of the copper 
vapor lasing lines). Its amplitude distribution in the 
observation plane L0 = L + z0 is characterized by the 
coefficients mx = 4 and my = 3. The radius a0 of a 
laser beam incident on the focusing system taken to 
be equal to 1 cm. The laser radiation is focused to a 
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nonlinear crystal by use of two crossed cylindrical 
lenses with the focal lengths fx = 460 cm and 

fy = 150 cm, Δf is chosen to be equal to 1.99 cm. The 
crystal is assumed to be oriented so that the wave 
detuning Δk = 3.98 cm–1. 
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Fig. 1. Normalized SH amplitude as a function of the 
coordinate õ0 (ó0 = 0) of the observation point. The distance 
z0 from the crystal to the observation point is 20 (à), 
100 (b), and 100 000 cm (c); curves 1 present the exact 
solutions, curves 2 the approximate ones. 
 

The above task has been solved by two different 
methods, namely by the method of direct integration 
of Eq. (1) using the method of splitting physical 
factors and applying fast Fourier transform8,9 (exact 

solution) and with the use of Eq. (4) (approximate 
solution). The calculated results are shown in Fig. 1 
as SH amplitude dependences on the coordinate x0 
(y0 = 0) of a point of observations in the plane L0 
(curve 1 corresponds to the exact solution and 
curve 2 – to the approximate one). The value 
U2(x0, y0, z, L0) was normalized to the amplitude A00 
of the fundamental radiation at the entrance of the 
focusing system. The computations have been 
performed for z0 = 10, 200, and 100000 cm. 

From the results shown, it follows that the 
approximate solution (4) steadily tends to the exact 
one while the observation plane moves away from the 
exit crystal facet. In this case, the results of these 
two methods become indistinguishable (for chosen 
mx, my and fx, fy) beginning from z0 ≈ 105 cm. Taking 
this into account, all calculations that follow were 
made using z0 = 105 cm assuming that possible errors 
can be neglected. 

2. Optimizing the SHG process 

Let us formulate rigorous statement of the 
problem in the following way. Consider the 
parameters of a laser radiation (λ, P, mx, my, a0) and 
of a nonlinear crystal (L, n(λ, θ), σ(λ, θ)) to be 
known a priori. The aim of our study is to find such 
values of 

 op opf fop k kop, , , and ,x x y yf f f fΔ = Δ Δ = Δ = =  

at which efficiency of SHG reaches its maximum. 
Ideally, the result should be both explicit 
dependences among the optimized parameters and 
their dependences on all the initial parameters. 

Different researchers have studied various 
special cases of the general problem stated. In our 
opinion, the most complete but not comprehensive 
are the results presented in Ref. 5, where the SHG 
was optimized at the spherical focusing of a Gaussian 
beam into an uniaxial crystal. The principal, for 
practical purposes, result is formulated as follows. 
The maximum of SHG efficiency is achieved at the 
so-called 90°-synchronism (ρ = 0) if the following 
conditions are fulfilled: 

 fop 0;Δ =   kop
1.6;

2

LΔ
= −   

2

0
op

op

2.84.
4

kL a

n f
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  (6) 

In this paper, we describe the results of the 
study, which is somewhat similar to those in Ref. 5, 
but for a more general problem. In general, a laser 
beam may not be Gaussian and a focusing system 
may consist of two cylindrical lenses. Besides, we 
restrict ourselves to the case when the angles θc of 
synchronous interaction are essentially less than 90° 
(fundamental radiation wavelength is longer than 
0.53 μm). Though the problem, characterized by 
these three features, is of certain practical interest, 
its detailed optimization [i.e., derivation of the 
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equations similar to Eqs. (6)] has not been carried 
out, as far as we know.  

In the course of the numerical experiments, we 
have concluded that optimal values of the parameters 
of our interest for the above-mentioned general case 
can be sought with a reasonable accuracy using the 
following empirical relationships: 

  fop 0,Δ =   (7a) 

  kop/2 1.5.LΔ = −   (7b) 

Optimal focal lengths are determined in the 
following way: 
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1. Spherical focusing (fx = fy ≡ fñ): 

  ñop 1.44.ξ ≈   (7c) 

2. Focusing by two crossed cylindrical lenses: 

  op 0.4,xξ ≈  op 3.2.yξ ≈   (7d) 

The beam focusing by one cylindrical lens is of less 
interest and we do not consider it in this paper. 

Below we shall try to prove the validity of the 
expressions proposed by varying the initial 
parameters within quite a wide range. For this, 
compare the SHG efficiency calculated at accurate 
optimization of the process and with the use of 
approximate Eqs. (7).  

Note, first, that validity of the Eq. (7a) follows 
from Eq. (4). Indeed, the increase of the modulus of 
Δf increases oscillations of the integrand and, hence, 
results in a decrease of both the SH amplitude at 
every observation point (x0, y0) and the efficiency of 
nonlinear conversion. This fact is known quite well 
(see, e.g., Refs. 1 and 5), so hereinafter we set Δf = 0. 
 Figure 2 shows the dependences of the efficiency 
of nonlinear conversion η  on the wave detuning Δk 

for three values of the length L of a nonlinear 
crystal. The beam (λ = 0.5782 μm) with mx = 4 and 
my = 3 was focused to the crystal by two crossed 
cylindrical lenses. The solid lines show the exact 
solutions (optimization by two parameters fx and fy) 
while the dotted lines show the approximate ones 
obtained with the use of Eq. (7d). 

It follows from the results presented that, first, 
the positions of the efficiency maxima are quite well 
defined by Eq. (7b) and, second, in the case of near 
optimal wave detuning the use of Eq. (7d) does not 
result in any essential errors. Finally, note one 
interesting feature. Though the value of the optimal 
wave detuning is essentially large (the shorter the 
crystal length the larger the value), a practical gain 
of such optimization (in comparison with the case of 
precise fulfillment of the synchronism condition) is 
minimum being on the order of 1%. Hence, in the 
considered wavelength range of the fundamental  
radiation, the efficiency maxima can be estimated 
with the use of Eq. (7b) or setting Δk = 0.  
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Fig. 2. The SHG efficiency (η) as a function of wave 
detuning. The crystal length equals to 8 (1), 6 (2), and 
4 cm (3). Solid lines show the exact solutions while the 
dotted lines present the approximate ones.  

 
Figure 3 demonstrates the use of Eqs. (7) at 

varying parameters mx and my. Here the functions 
η(mx, my = 1) and η(mx = 1, my) are shown for the 
radiation with the wavelength 0.5782 μm focused to 
a 4-cm long crystal with a spherical lens. 
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Fig. 3. SHG efficiency η as a function of mx and my at 
spherical focusing: η(mx, my = 1) (curves I) and 
η(mx = 1, my) (curves II). Curves 1 show the optimization 
over Δk and f, curves 2 – optimization over f [Δk is 
calculated by Eq. (7b)], curves 3 present approximate 
solutions; Δk and f are calculated by Eqs. (7). 

 

As is seen from the comparison of curves 1 and 
2, the use of approximate Eq. (7b) does not reduce 
the accuracy of calculations. Less successful is the 
approximation (7c) and it’s quality deteriorates with 
the increase of mx and my. But even in the least 
favorable cases the use of Eq. (7c) results in errors 
no larger than 1%, i.e., the accuracy of calculation 
remains quite acceptable. 

The behavior of the efficiency of nonlinear 
conversion as a function of the coefficients mx and my 
is also seen from Fig. 3. To check this up, we have 
repeated the above computations (the results are not 
presented here) by making use of direct integration of 
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equations (1) as was done in Sec. 1 of this paper. As 
expected, the results obtained by both methods are 
identical. Monotonic decrease of the efficiency with 
the increase of my can well be explained by the 
corresponding decrease of the amplitude of 
fundamental radiation in the waist plane. As to the 
efficiency increase with increasing mx and, 
particularly, the presence of maximum at mx ≈ 3, this 
requires a separate study which is beyond the scope 
of this work.  

Figure 4 shows the efficiency of nonlinear 
conversion η as a function of the fundamental 
radiation wavelength λ.  
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Fig. 4. The SHG efficiency η as a function of the 
fundamental radiation wavelength at optimal spherical 
focusing (curves 1 and 2) and optimal cylindrical focusing 
(3 and 4). Curves 1 and 3 present the exact solutions (solid 
lines), while curves 2 and 4 show the approximate ones 
obtained with the use of Eqs. (7) (circles). 

 

Curves 1 and 2 present the case of a spherical 
beam focusing (mx = 4, my = 3) to a nonlinear 
crystal of 4-cm length, while curves 3 and 4 the case 
with focusing the same beam using two cylindrical 
lenses. Curve 1 (solid line) is the result of SHG 
optimization over the parameters Δk and f = fx = fy. 
Curve 3 (solid line) present the optimization over fx 

and fy. In so doing, the value Δk has been chosen in 
accordance with Eq. (7b). Strictly speaking, the 
optimization in the last case is to be carried out over 
three parameters, i.e., fx, fy, and Δk, however the 
correction to the result is minimum in this case while 
the computing time becomes unacceptably long. In 
the previous case (related to Fig. 3), we considered 
the spherical focusing but not cylindrical one for this 
same reason, i.e., to restrict ourselves to two-
parameter optimization. 

Perfect coincidence of the curves 1, 2 and 3, 4 
allows one to conclude that the use of approximate 
optimal conditions (7b)–(7d) for the considered 
wavelength range of fundamental radiation does not 
introduce any significant error. 

Besides, the results shown in Fig. 4 allow the 
conclusion to be drawn that focusing by two crossed 

cylindrical lenses provides better results than those at 
spherical focusing. For practical estimations, one can 
suppose the gain due to the cylindrical focusing to be 
independent of a fundamental radiation wavelength 
and is about 25%. 

The above gain remains at the same level at 
different nonlinear interaction distances, which is 
demonstrated by the results shown in Fig. 5. 
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Fig. 5. The SHG efficiency η as a function of nonlinear 
crystal length. Curves 1 and 2 present the case with a 
Gaussian beam at optimal spherical and cylindrical focusing, 
respectively; curves 3 and 4 present the case with optimal 
cylindrical beam focusing at mx = my = 3 and mx = my = 7. 
Solid lines show exact solutions and circles show the 
approximate ones. 

 

The wavelength of fundamental radiation was chosen 
at 0.5782 μm. Calculations were carried out by two 
methods similar to the previous case (see comments 
to Fig. 4). Solid lines show the case of exact 
matching of optimal parameters, while circles show 
the results obtained using approximate conditions (7). 
Both methods give indistinguishable (at such 
variations of the efficiency) results thus 
demonstrating sufficiently high quality of 
approximations (7) once again. 

The dependences of the nonlinear conversion 
efficiency on mx and my are shown in Fig. 3. Now 
return to the question on the influence of the 
amplitude form on the SHG efficiency and show the 
result obtained at simultaneous increase of the 
parameters mx and my. It follows from the 
comparison of curves 3 and 4 with the curve 2, that 
the conversion efficiencies of beams, less “fuzzy” in 
the cross sections, are a little bit lower. 

The result of simultaneous, but not obligatory 
the same, increase of mx and my can be quite 
precisely predicted if the coefficients  

 ( ) ( , 1)/ ( 1),x x x y x yc m m m m m= η = η = =   (8a) 

 = η = = η =( ) ( 1)/ ( 1, )y y x y x yc m m m m m   (8b) 

are known. For example, the above coefficients can 
be easily found using the results from Fig. 3. In this 
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case, according to our estimates, the following 
equation is fulfilled with good accuracy: 

 ( , ) ( 1) ( )/ ( ).x y x y x x y ym m m m c m c mη = η = =   (9) 

In other words, the mechanisms (which are 
unknown so far) determining the influence of the 
parameters mx and my on the SHG efficiency turn out 
to be additive. 

In addition to the significant increase of the 
efficiency, the change from spherical to cylindrical 
focusing provides for another one advantage. To 
comment this, let us turn to Fig. 6. 
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Fig. 6. The SHG efficiency η as a function of the focal 
length f: η(fx = fxop, fy = f) (1), η(fx = f, fy = fyop) (2), and  
η(fx = fy = f) (3). 

 

The considered case is characterized by the 
following initial data: λ = 0.5782 μm, mx = 4, 
my = 3, and L = 4 cm. The first two curves show the 
case with cylindrical focusing, while the last one 
presents the case with spherical focusing. The 
variable f determines the focal length of the lens Ly, 
in the first case; lens Lx in the second case, and the 
spherical lens in the third one. The focal lengths fxop 
and fyop for curves 1 and 2 were chosen based on 
Eq. (7d). 

The above-mentioned advantage of the 
cylindrical focusing is a weak dependence of the 
efficiency on the focal length fx, which follows from 
the view of the curve 2 at f > fxop. This fact is of 
principal importance for the SHG of powerful laser 
radiation. In this case, the maximum efficiency of 
nonlinear conversion is to be limited by the strength 
of a nonlinear medium to high-power irradiation 
which is about 1 GW/cm2 (critical power density) 
for the majority of known crystals. 

In case of nanosecond (or shorter) laser pulses, 
optimal focusing (spherical or cylindrical) produces 
power densities commensurable or exceeding the 
above critical value in the waist plane (i.e., inside 
the crystal) even at a relatively low power. In this 
situation, to protect the crystal, it is necessary to 
avoid optimal focusing by increasing the focal lengths 
of the lenses used. In that case, use of spherical 

focusing would noticeably decrease the nonlinear 
conversion efficiency (see curve 3 in Fig. 6). Similar 
result is obtained in the case of cylindrical focusing, 
if one decreases the power density and increases the 
focal length fy (curve 1). Different situation is 
observed when focal length fx increased. In this case, 
(see curve 2 in Fig. 6) the power density can be 
decreased by several times while the SHG efficiency 
keeps at the level practically indistinguishable from 
the maximum (optimum) value.  

Such a property of the cylindrical focusing, 
useful for practical purposes, can be explained in the 
following way. On the one hand, the influence of 
diaphragm and angular aperture effects (see, e.g., 
Refs. 1, 2, and 5) decreases with the decrease of 
fundamental radiation divergence in the principal 
optical plane (in our case, in the coordinate plane 
XZ) thus resulting in an increase of the SH efficiency 
and power. On the other hand, the increase of the 
focal length fx is accompanied by a decrease of the 
power density of the fundamental radiation and, 
hence, the proportional (at least in the preset-field 
approximation) decrease of the conversion efficiency. 
The behavior of curve 2 in Fig. 6 evidences that the 
influences of these “positive” and “negative” 
mechanisms, in the region fx > fxop, is almost 
completely compensated. In this paper, we restrict 
ourselves to this qualitative reasoning having in mind 
that there should be no difficulties in detailed 
qualitative analysis of mechanisms determining the 
dependence of the SHG efficiency on the parameters 
of a focusing system. 

Conclusion 

Strictly speaking, the main result, i.e., 
solution (4) enabling us to study of the problems of 
our interest, does not introduce noticeable errors only 
when the efficiency of nonlinear conversion does not 
exceed 5%. This is caused by the fact that 
solution (4) has been obtained in the preset-field 
approximation. Nevertheless, we have a good reason 
to believe (strict demonstration is planned soon) that 
the optimal conditions (providing the maximum 
conversion efficiency), defined within the developed 
model, will change insignificantly even at an 
essential increase of the laser radiation power. 
However, in that case the value of the maximum 
efficiency can be estimated only with an error 
(overestimation is possible), which increases with the 
increase of the laser radiation power. 

In this study, conditions optimal for SHG have 
been studied in a KDP crystal at the scalar «ooe»-type 
of synchronism. Unfortunately, at present, it is 
impossible to conclude about the applicability of the 
obtained results to other nonlinear processes, in other 
nonlinear crystals, and for other types of interactions. 
This question requires an additional study (following 
to the universal scheme proposed in this paper). 

Here the problem of optimizing the SHG process 
has been considered for the most simple (in our 
opinion) but practically useful case, when the 
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synchronous interaction angles are far from 90°. In 
the case of a KDP crystal, this means that the 
wavelength of fundamental radiation is to be longer 
than 0.53 μm. The upper limit of 1.06 μm of the 
spectral range under study has been chosen quite 
arbitrarily.  

We have considered the focusing system of two 
thin cylindrical lenses crossed in the beam. Such a 
system is universal for computations since it is the 
simplest for simulating the use of any focusing 
system consisting of an arbitrary number of optical 
elements at a proper choice of focal lengths and 
distances between the lenses (of course assuming the 
case of aberration-free optics). 

Within the above restrictions, the obtained 
results allow us to formulate the following principal 
conclusions. 

1. Maximum SHG efficiency is provided when 
beam focusing to the crystal is being done by two 
cylindrical lenses with uniquely chosen optimal focal 
lengths. The mentioned optimal focal lengths can be 
approximately estimated with the use of empirical 
Eqs. (7d), which introduces an error no more than 
1%, in computing the maximum efficiency, as 
compared to exact result.  

2. As compared to the optimal spherical focusing 
[focal length agrees with Eq. (7c)], the optimal 
cylindrical focusing provides the efficiency gain of 
about 25% and the gain value is practically invariable 
even if the initial parameters vary in a wide range.  

3. The maximum of SHG efficiency is achieved 
at the wave detuning Δk = Δkop obeying Eq. (7b). The 
efficiency varies insignificantly (no more that by 
1.5%) at the wave detuning Δk varying from 0 to 
Δkop. For this reason, we conclude that such an 
optimization mechanism is of no practical use for the 
class of problems under study, hence, for simplifying 
computations, one may set Δk = Δkop = 0 for all the 
cases. 
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