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We propose to supplement the nonlinear ring interferometer (NRI) with two-dimensional 
feedback, known since 1979, with second feedback loop (FBL) arranged by adding two mirrors. To 
study the regular and random modes of operation of a dual feedback NRI (DNRI), we have constructed 
the mathematical model that allows for multiple passes and the model based on loss approximation. 
The computational algorithms have been constructed and the bifurcation behavior of the DNRI has 
been analyzed. The data obtained allow determining the sets of DNRI physical parameters that 
govern the transition from the static mode of operation to the dynamic one (including the 
deterministic chaos). It is supposed that owing to various turns and time lags of a laser beam in two 
FBls (when either various systems of coupled oscillators or the system of additional coupling in an 
oscillator are formed in the DNRI) such an interferometer has advantages as a coder in a system of 
confidential communication lines. 

 
The experiments have shown that nonlinear ring 

interferometer (NRI) is represented as an example of 
optical system capable of generating both regular 

optical structures and the deterministic chaos.1–4 

Since the middle of 1990s, the development of 
principles and data-processing units using NRI as well 
as its fiber-optic analogs, made up an independent 
branch in the information optics.1,5 Specifically, the 

deterministic chaos condition is thoroughly investigated 

within the frameworks of the developments of systems 

for confidential communication. We have analyzed 
the optical, physical, and nonlinear dynamical 
phenomena in this NRI and in the cryptosystem 
based on it.6,7 

To increase the cryptostability of the confidential 
communication and to widen the possibilities of 
controlling the number, type, and mutual bracing 
(constellation) of static conditions in a phase space of 
the dynamic system, it is proposed to supplement the 
NRI optical layout with a second feedback loop (FBL). 
The large scale transformation of light field (of the 
FBL1-type or another), losses, field time lag, and phase 
shift can take place in the FBL2. The assumption that 
the control over parameters of laser radiation can be 
improved well agrees with the conclusions drawn in 
Ref. 8 that the use of a spatial Fourier filter in 
additional FBL allows one to affect the formation of 
structures and suppress the turbulent regime. 

In order to check the assumptions made, it is 
necessary to construct a mathematical model of the 
processes in the DNRI, to find its stationary solutions, 
and to analyze their stability. It is also necessary to 
find out the features of bifurcation behavior using a 
model of the DNRI, as well to look for possibilities 
of controlling this behavior and possible advantages 
of DNRI over the NRI in terms of stability to 
attempts of “cracking” the cryptosystem. 

Description of scheme and model 
of a dual feedback NRI 

 
The optical arrangements of the NRI and DNRI 

are presented in Fig. 1. Here Einp and Eoutp are the 
input and output fields of the NRI, NM is the non-
linear medium (for instance, liquid crystal) of the 
length l, G and Gi are the linear elements that 
perform the large scale transformations of the optical 
field (turn by the angle Δ and Δi, shift, compression 
or extension in the plane xÎy of the laser beam cross 
section), Mi are the mirrors. 

A model describing the dynamics of nonlinear 
phase shift U in a DNRI, with a bichromatic optical 
field, whose projections Ex(r, t), Ey(r, t) are 

 Ex(r, t) = a(r, t) cos[(ω + Ω)t + Ψ(r, t)] + 

  + b(r, t) cos[(ω − Ω)t + Θ(r, t)], 

 Ey(r, t) = a(r, t) sin[(ω + Ω)t + Ψ(r, t)] − 

 – b(r, t) sin[(ω − Ω)t + Θ(r, t)],  

has the form of a partial differential equation with 
the right-hand side containing the function f(r, t) that 
nonlinearly depends on U(r, t): 

τn(r)∂U(r, t)/∂t = De(r)ΔU(r, t) – U(r, t) + f(r, t); (1) 

 f(r, t) = QaKn2n(r)an
2(r, t) + K(1 − Qa)n2n(r)bn

2(r, t); 

 an(r, t) = (Aca
2 + Asa

2)0.5; bn(r, t) = (Acb
2 + Asb

2)0.5; 

 Ψ(r, t) = Arg(Aca, Asa);   Θ(r, t) = Arg(Acb, Asb); 

 Aca = ainp n(r, t) cos[Ψinp(r, t)] + 0.5γ1(r1′ , t) × 

 × an(r1′ , t – τ1) cos[Ψ(r1′ , t – τ1) – (1 + q)ωτ1]/σ1 + 

 + 0.5γ2(r2′ , t)an(r2′, t – τ2) cos[Ψ(r2′, t – τ2) – (1 + q)ωτ2]/σ2, 
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Fig. 1. Optical trains of NRI (à) and double-circuit NRI (c). NRI and ray path in NRI when turning the light field (by G-
element) at Δ = 360°/m = 120° in the plane xÎy: the ray paths 1, 2, 3, closed after three tracings (à); the ray path projection 
1, 2, 3 to the plane xÎy (b). 
 
 Asa = ainp n(r, t) sin[Ψinp(r, t)] + 0.5γ1(r1′ , t) × 

 × an(r1′ , t – τ1) sin[Ψ(r1′ , t – τ1) – (1 + q)ωτ1]/σ1 + 

 + 0.5γ2(r2′ , t)an(r2′, t – τ2) cos[Ψ(r2′, t – τ2) – (1 + q)ωτ2]/σ2, 

 Acb = binp n(r, t) cos[Θinp(r, t)] + 0.5γ1(r1′ , t) × 

 × bn(r1′ , t – τ1) cos[Θ(r1′ , t – τ1) – (1 – q)ωτ1]/σ1 + 

+ 0.5γ2(r2′ , t)bn(r2′, t – τ2) cos[Θ(r2′, t – τ2) – (1 – q)ωτ2]/σ2, 

 Asb = binp n(r, t) sin[Θinp(r, t)] + 0.5γ1(r1′ , t) × 

 × bn(r1′ , t – τ1) sin[Θ(r1′ , t – τ1) – (1 – q)ωτ1]/σ1 + 

 + 0.5γ2(r2′ , t)bn(r2′, t – τ2)sin[Θ(r2′, t – τ2) – (1 – q)ωτ2]/σ2. 

Here r ≡ (x, y) is the radius-vector of the cross section 
xOy; τn is the relaxation time of a nonlinear part of 
the refractive index of an l-long NM, De is the 
normalized coefficient of molecular diffusion in NM. 
Ψ, Θ and Ψinp, Θoutp are the input field phases of NM 
and NRI; 

 an(r, t) = a(r, t)/[(1 – R1)
0.5ainp max{r,t}], 

 bn(r, t) = b(r, t)/[(1 – R1)
0.5binp max{r,t}]; 

 ainp n(r, t) = ainp(r, t)/ainp max{r,t}; 

 binp n(r, t) = binp(r, t)/binp max{r,t} 

are the normalized field amplitudes at input of NM 
and NRI; ainp max{r,t}, binp max{r,t} are the maximum 
values of the input field amplitudes, 

 τi ≡ τi(ri′, t) = tei(ri′, t) + U[ri′, t – tei(ri′, t)]/ω 

is the propagation time of the light field component 
passing (through the ith FBL) by the time moment t 
to the point r of the NM input plane from the point 
ri′ of the same plane (total lag time, time of the 
complete roundtrip in the interferometer through the 
ith FBL); tei is the equivalent lag time in the ith 
FBL of the DNRI; 

 q ≡ Ω/ω; Qa = Ka/K; K = Ka + Kb, 

  Ka = (1 – R1)aîå n2 max{r}lk (ainp max{r,t})
2, 

 Kb = (1 –R1)aîå n2 max{r}lk (binp max{r,t})
2 

are the parameters determining the force due to 
nonlinear effects; 

 n2n(r) = n2(r)/n2 max{r} 

is the normalized parameter of nonlinear refraction, 
n2 max{r} is the maximum value of the nonlinear 

refraction parameter, k =⎪k⎪ = ω/c is the wave number; 
 

 γ1(r1′ , t) ≡ 2Cn(r1′)κ1(r1′ , t)RI, 

 γ2(r2′ , t) ≡ 2Cn(r2′)κ2(r2′ , t)RII 

are the doubled amplitude transmission coefficients 
(doubled coefficients of loss /transmission) in the 
FBL1 and FBL2, Cn, κ1, κ2 are the losses in NM and 
FBL elements of DNRI; 

 RI ≡ (R2 R3 R4 R1)
1/2; 

 RII ≡ [R2 (1 – R3) (1 – R4) R1]
1/2; 

Ri are the refraction coefficients of the corresponding 
mirrors; σi is the coefficient of beam extension in the 
ith FBL. 

Let us operate, in what follows, with the model 
in the so-called point approximation (point model) 
that follows from the above stated, if one assumes 
that no molecular diffusion of NM exists, i.å., 
De = 0. By turning at an angle Δj = 2πMj/m (or 
shifting by δj = Mjδ times, or compressing by 
σj = Mjσ times), the model takes the form of a 
differential equation  

 τn idUi(t)/dt = –Ui(t) + QaKn2n ian
2

 i(t) + 

 + K(1 – Qa)n2n i bn
2

 i(t);  (2) 

 an i(t) = (Aca
2

 i + Asa
2

 i)
0.5; bn i(t) = (Acb

2
 i + Asb

2
 i)

0.5; 

 Ψi(t) = Arg(Aca i, Asa i);  Θi(t) = Arg(Acb i, Asb i); 

 Aca i = ainp n i(t) cos [Ψinp i(t)] + 

 + 0.5γ1 i–M1(t) an i–M1(t – τ1) × 

 × cos [Ψi–M1(t–τ1) – (1 + q)ωτ1]/σ1+ 

 + 0.5γ2 i–M2(t) an i–M2(t – τ2) × 

 × cos [Ψi–M2(t – τ2) – (1 + q)ωτ2]/σ2, 

 Asa i = ainp n i(t) sin [Ψinp i(t)] + 0.5γ1 i–M1(t) × 

 × an i–M1(t – τ1) sin [Ψi–M1(t – τ1) – (1 + q)ωτ1]/σ1 + 
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 + 0.5γ2 i–M2(t) an i–M2(t – τ2) × 

 × sin [Ψi–M2(t – τ2) – (1 + q)ωτ2]/σ2, 

 Acb i = binp n i(t) cos [Θinp i(t)] + 0.5γ1 i–M1(t) bn i–M1(t – τ1) × 

 × cos [Θi–M1(t – τ1) – (1 – q)ωτ1]/σ1 + 

 + 0.5γ2 i–M2(t) bn i–M2(t – τ2) × 

 × cos [Θi–M2(t – τ2) – (1 – q)ωτ2]/σ2, 

 Asb i = binp n i(t) sin [Θinp i(t)] + 0.5γ1 i–M1(t) bn i–M1(t – τ1) × 

 × sin [Θi–M1(t – τ1) – (1 – q)ωτ1]/σ1 + 

 + 0.5γ2 i–M2(t) bn i–M2(t – τ2) × 

 × sin [Θi–M2(t – τ2) – (1 – q)ωτ2]/σ2, 

where 

 τ1 ≡ τ1 i−M1(t) = te1 i−M1(t) + Ui−M1[t – te1 i−M1(t)]/ω, 

  τ2 ≡ τ2 i−M2(t) = te2 i−M2(t) + Ui−M2[t − te2 i−M2(t)]/ω. 

For the NRI operated in the static mode 
(d/dt = 0), one can obtain the following relations: 
 

 an i = (Aca
2

 i + Asa
2

 i)
0.5; Ψi = Arg(Aca i, Asa i); 

 bn i = (Acb
2

 i + Asb
2

 i)
0.5; Θi = Arg(Acb i, Asb i); 

 Aca i = ainp n i cos [Ψinp i] + 0.5γ1 i–M1 an i–M1 × 

 × cos [Ψi–M1 – (1 + q)ωτ1]/σ1 + 

 + 0.5γ2 i–M2an i–M2 cos [Ψi–M2 – (1 + q)ωτ2]/σ2, 

 Asa i = ainp n i sin [Ψinp i] + 0.5γ1 i–M1 an i–M1 × 

  × sin [Ψi–M1 – (1 + q)ωτ1]/σ1 + 

 + 0.5γ2 i–M2 an i–M2 sin [Ψi–M2 – (1 + q)ωτ2]/σ2, 

 Acb i = binp n i cos [Θinp i] + 0.5γ1 i–M1 bn i–M1 × 

  × cos [Θi–M1 –(1 – q)ωτ1]/σ1 + 

 + 0.5γ2 i–M2 bn i–M2 cos [Θi–M2 – (1 – q)ωτ2]/σ2, 

 Asb i = binp n i sin [Θinp i] + 0.5γ1 i–M1 bn i–M1 × 

  × sin [Θi–M1 – (1 – q)ωτ1]/σ1 + 

 + 0.5γ2 i–M2 bn i–M2 sin [Θi–M2 – (1 − q)ωτ2]/σ2; 

 τ1 ≡ τ1 i−M1 = te1 i−M1 + Ui−M1/ω, 

 τ2 ≡ τ2 i−M2 = te2 i−M2 + Ui−M2/ω; 

 Ui = QaKn2n i an
2

 i + K(1 – Qa)n2n i bn
2

 i, (3) 

where i is the order number of a point in the chain of 
transposition points (in the laser beam cross section). 
It is obvious that the obtained expression (2) can be 
interpreted as a vector function of the vector argument 
Ei = F(Ei−M1, Ei−M2), where Ei ≡ (an i, Ψi, bn i, Θi) is used. 
  Let M1 ≥ M2. Then, a model of space changes in 
amplitudes an i, bn i and phases Ψi, Θi of the fields in 
DNRI is represented by means of discrete mapping 
(DM), which consists of the M1 vector equations 
determined through the function Ei. Moreover, DM 
has dimensionality of 4M1: 

 Ei+1, l = F{Ei, l–0M2, F[Ei, l–1M2, F(Ei, l–2M2, … 

 …, F(Ei, l–n M2, Ei, M1−M2+j))]}, (4) 

where the subscript i denotes the discrete evolutionary 
variable (corresponding to a group of points from the 
chain of transposition points), i.å., it is an analog of 
time, l = nM2 + j, l, n, j are the integers, such that 
l = [1; M1]; j = [1; M2 – 1]. 

The presence of two FBLs gives rise to the 
variety of combinations for space field transformations 
in each of the FBLs.  

 
Chain of transposition points  

and specific features  
of DNRI interpretation as a system  

of coupled oscillators 
 
Spatial transformation of light field conducted 

by means of linear elements Gi, causes the type of 
chain of transposition points (CTP). For elementary 
field transformations in a G-element of a single 
feedback NRI, the CTP-types are shown in Table 1. 
In its turn, the type of CTP determines the structure 
of mutual dependence for the values of dynamic 
variables, i.å., the dependence of Ui+1 on Ui, in 
conjunction with characteristics of (un)closeness and 
(infiniteness) finitude. 

As to DNRI, complication of the CTP-structure 
can take place both due to the inevitable expansion 
of typology, and because of the complication inside 
each of the above-mentioned CTP-type. 

Assume that turn of light field takes place in the 
ith FBL by the angle Δi = 2πMi/m, where m is the 
number of points from the NRI considered, i.å., the 
number of points in the CTP. For instance, in Table 1 
for the single feedback loop NRI, where Δ = 120°, 
m = 3. The quantity 2π/m is the “quantum” of the 
turn angle, i.e., the minimum-turn angle at the preset 
m value. Then, Mi is the numerical expression (in 
units of 2π/m) of the field turn angle Δi, or, with 
regard for the CTP, the movement pitch size on CTP. 

Therefore, according to combinations of the 
values Mi and m, the CTP-structure changes 

appreciably. Three numbers (subscripts) are m, M1, 
M2 can be considered as a natural “coding” of the 
structure. This coding is used in Table 2 and further 
in the text, where different configurations of 
transitions between the points in CTP are presented. 
Figures in Table 2 denote transitions between the 
points in CTP by lines: dashed lines denote transitions 
in FBL1, solid lines denote transitions in FBL2. 
Table 2 shows how diversely the CTP-structure 
becomes complicated with the growth of m due to  
the presence of the second feedback, FBL2. In case of  
one FBL, Table 2 would contain only one cell 
corresponding to the triad m11. However, the way of 
representing, used in Table 1, is too redundant. For 
instance, the CTP mmm is decomposed into m CTP 111. 
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Table 1. Connection between the elementary transformations of a laser beam in FBL of NRI  
(setting the chain configuration of transposition points) and the optical structure U(r, t),  

being formed in the beam cross section  

Elementary types of beam transformation by the G-element 

Turn (Δ = 2πM/m) Shift (δ) Compression (1/σ) Extension (σ) 

 ó 

õ 
2 

1

m 
m = 3  

 ó

õ

mi i + 11 

 

300
 

õ

1 1∞

ó

 

 ó 

õ 

–∞ 1 1 

 
CTP-type 

Unclosed infinite 
Closed finite Unclosed finite 

(m = ∞) (m = –∞) 

The idealized structures formed 

    
 

Table 2. Configuration of transitions between the points in CTP in case of “three-point” (m = 3)  
model of processes in DNRI  

M2 m = 3 
1 2 3 

1 

 
311 

 
312 

 
313 

2 

 
321 

 
322 

 
323 

M1 

3 

 
331 

 
332 

 
333 

 
If m is a prime number, only the first line is 

urgent in such Tables, all the rest configurations of 
transitions can be expressed through the 
configurations existing in it. Otherwise, one should 
choose the values of triple subscripts in tables 
according to the following rule: m = M1N1, 
m = M2N2, where M1 and M2 are the mutually prime 
numbers. For instance, for a CTP consisted of  
six points, M1 = 3 is realized for N1 = 2 (two-point 
structures) and M2 = 2 for N2 = 3 (three-point 
structures). 

The case of 313 can be interpreted in Table 2  
as a system of three coupled oscillators, i.å., single 

feedback “single-point” NRI. This connection is 
provided by the second feedback: laser beam energy 
of one of the above-mentioned NRI goes into another 
NRI through this feedback successively and effects 
the dynamics (mode type), and, probably, the 
synchronism of oscillations in them. The parameter γ2 

serves a coupling coefficient between the NRIs. 
On the contrary, the case of CTP 311 and 312, 

apparently, should be interpreted as emergence of a 
system of three additional couplings in one oscillator 

(“three-point” NRI) owing to the second FBL 
arranged. This property manifests itself in a more 
evident way at m = 5 and higher. 



254   Atmos. Oceanic Opt.  /March  2007/  Vol. 20,  No. 3 I.V. Izmailov et al. 
 

 

Simulation data 

Peculiarities in the structure  
of bifurcation diagrams 

 
According to the statement of the problem, it is 

necessary to find the stationary solutions and to 
analyze their stability. It is expedient to simplify the 
task, having restricted oneself to the approximation 
of strong losses (R2Cn) << 1, i.å., when the light field 
component after the second NM pass is considered 
negligible, and by assuming the absence of a time lag 
(tej << τn) for the single-frequency field (Qa = 1, 
binp n i(t) = 0, q = 0) in the FBL. Therefore, assuming 
that ωtej i ≈ 2πN, one has a simplified version, instead 
of the model (2): 

 τn idUi(t)/dt = –Ui(t) + K[1 + γ12 cos (Ui−M1(t)) + 

+ γ13 cos (Ui−M2(t)) + γ23 cos (Ui−M1(t) – Ui−M2(t))], (5) 

where γi j characterize the interference pattern visibility 
and are caused by radiation losses in the FBL: 

 γ12 = 2RI κ1Cn, γ13 = 2RII κ2Cn, γ23 = 2RIIRI κ1κ2Cn. 

Henceforth, it is necessary to compare the results 
obtained for the models of single and dual feedback 
loop interferometers. It is advisable to use for this 

purpose the factor of radiation loss / transmission (for 
the amplitude) γ = 2R κCn for one pass through the 

FBL of a single feedback loop NRI. One can show  

that γ12 = γ(R3R4)
1/2

 κ1/κ, γ13 = γ(1 – (R3R4)
1/2)κ2/κ, 

and γ23 = γ2(R3R4)
1/2(1 – (R3R4)

1/2)κ1κ2/(2κ2). In 
dealing with the model (5), it is convenient to set 
values of γ at (R3R4)

1/2 = 0.5 and κ1 = κ2, then 
γ12 = γ13. 

To analyze the model properties, the bifurcation 
diagrams are constructed (static (dUi(t)/dt = 0) 
here) for the dependence of solution on the selected 
bifurcation parameter. The field turn by the angles of 
0 and 180, 0 and 120, 0 and 90, 90 and 180, 120 and 
180° are considered. Figure 2 gives a general idea of 
the evolution of bifurcation diagrams (BD) for a 
single feedback loop interferometer (Fig. 1à) with 
the account of the field turn in the FBL. 

For estimation of the additional effect of FBL 
on the BD structure, the simulation has been carried 
out, when the field turn is performed in only one 
loop. It is established that BDs are identical by 
structure for the model of a single feedback loop 
interferometer at field turn angles in the loop being 
Δ1 = 180°, Δ2 = 0° or Δ1 = 90°, Δ2 = 0° ignoring time 
lag and field turn in the FBL at the corresponding 
values of the radiation losses (Fig. 2à). 

The form of BD for a “point” model of DNRI is 
analyzed in Fig. 2 at γ = 0.8, (R3R4)

1/2 = 0.5 and 
Δ1 = 180, Δ2 = 0°, or Δ1 = 120°, Δ2 = 0°, or Δ1 = 90°, 
Δ2 = 0° in the approximation of strong losses and 
neglecting the time lags te i for the field in FBLs with 
equal losses (γ12 = γ13 = 0.5γ). It turns out that if an 
optical field in the laser beam cross section is turned 

by Δi = 2πMi/m (where i = 1, 2), and Δi = 0, Δj ≠ 0, 
then 

– at even m, the BD structure is the same as for 
the single feedback model of the NRI with Δ = 0; 
  – at odd m, the BD structures for the model  
of DNRI are essentially different from those for the 
models of NRI both with Δ = Δi and with Δ = Δj. 
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Fig. 2. Bifurcation diagrams (statistic solution on the  
plane Ui is the nonlinearity parameter K at γ = 0.8) for a 
single feedback loop NRI at a field turn angles in the loop: 
Δ = 0° (à); 180° (b); 120° (c); 90° (d). Stationary sections  
of branches are denoted by bold lines. 

 
Figure 3 presents the BD for the model of DNRI 

showing a series of characteristics. 
1) No bistability occurs at K ∈ [2.0; 5.1]. This is 

caused by the contradiction in the bistability conditions 
for single feedback systems at Δ = 180 and 90°. 

2) Configuration of stable and unstable BD 
branches changes significantly. Unlike the single 
feedback system with Δ = 90°, the stable regions 
appear at K > 8. 

3) The position of BD branches corresponding to 
the equal values of the phase shifts Ui, remains 
constant. This fact follows directly from the model 
and serves a verification example. 

In comparing Figs. 3c and d, one can state that 
the increase in m of the CTP points, which occurs at 
change of the field turn angle in one of FBLs, 
increase in the number of branches is observed at 
smaller values of nonlinearity coefficient K, i.å., at 
lower levels of input radiation. 

As follows from analysis of a number of 
(un)stable BD branches, the second FBL serves the 
DNRI control means as a generator of the 
deterministic chaos. Structure of the BD for the 
model of DNRI at Δ1 = 90°, Δ2 = 180° at different 
ratios of loss / transmission coefficients γ12/γ13 (due 
to the difference of (R3R4)

1/2 from 0.5 or change in 
κi), when γ = 0.5, have shown that BD structure 
essentially depends not only on ratio γ12/γ13, but also 
on the values γ12 and γ13. 
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Fig. 3. Bifurcation diagrams Ui(K) (γ = 0.5) for a single 
feedback loop NRI at field turn angles in the loop: Δ = 180° 
(à); 90° (b); and for a dual feedback loop interferometer at 
field turn angles in the circuits: Δ1 = 90° and Δ2 = 180° 
(c); Δ1 = 120° and Δ2 = 180° (d). 

 
For the parametric regions, where the BD 

branches are stable, one can exactly predict which 
statistical behavior will appear in the model of 
DNRI. Otherwise, dynamic modes are inevitable. Let 
us make a simulation, for investigation reasons, based 
on the model (2). 

 
Characteristics of the dynamic mode  

in the model of DNRI 
 
Numerical experiments have shown that choosing 

the DNRI-parameters (nonlinearity coefficients K, 
transmission coefficients in a FBL γi, lag times te i in 
FBL1 and FBL2, field turn angle Δi in each of the 
FBLs) allows one to perform a series of control 
modifications. 

1) Control over mean values of U and phase 
shift between oscillations U at the (transposition) 
points of the laser beam cross section. 

2) Control over the type and ending of the 
determination process, which has the form of transient 
phenomenon: from the periodic duty to the quasiperiodic, 
from periodic to chaotic, from a static to the periodic, 
from a periodic in-phase (in two transposition points) 
to the non-phased periodic, at these points, from a 
chaotic to the periodic one. 

For orienting how the model parameters effect 
toward the dynamic mode, the fractal dimensionality 
maps D0(te1, te2) were constructed for the attractor in 
the model (Fig. 4). The map structure analysis allows 
certain generalizing statement to be formulated. 

te2 

2

1.5

1

0.5

0.5      1      1.5       2      te1  
à 

 

te2 

2

1.5

1

0.5

0.5    1      1.5       2      te1  
b 

Fig. 4. Dependence of the fractal dimensionality D0(te1, te2) 
on the time-lag ratio in feedback loops. The darker regions 
correspond to larger values of D0; m = 2, Δ1 = 180°, 
K = 5.5; Δ2 = 180° (a); Δ2 = 0° (b). 
 

If in both FBLs Δ ≠ 0, a fractal dimensionality 
of the attractor is not reduced (as a rule, it is 
essentially increased) in comparison with the case, 
when Δi = 0, and the parametric regions, where the 
fractal dimension of the attractor is high, are 
extended. These conclusions conform to observations 
for the behavior of U at different points of the beam 
cross section: dynamics of U becomes complicated as 
compared with the behavior of U, when Δi = 0. 
According to Ref. 9, large values of fractal dimension 
D0(te1, te2) are considered as a precondition for high 
security in the system of confidential communication. 
  The nature of transient phenomenon in DNRI 
agrees with the DNRI characteristics demonstrated 
earlier: complement of NRI by one more FBL enables 
the formation of either a system of coupled oscillators 
comprising DNRI, as a whole, or the system of 
couplings inside one oscillator, such as DNRI. 

 

Simulation of time-lag hacking  
by correlation analysis of output field 

 
By use of the D0(te1, te2) maps, one can perform 

more or less purposeful fitting of the intervals of  
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Fig. 5. Auto- (à) and cross-correlograms (b, c) for the model of DNRI at Δ1 = 180î, Δ2 = 90î, lag times in FBL1 and FBL2 
te1/τn = 1 and te2/τn = 5, Δte/τn = 4, where τn = 10–9 s; losses γ1 = γ2 = 0.125, nonlinearity coefficient = 10. 
 
physical parameters providing the desirable properties 
of a DNRI-based encoder. First, this concerns the 
resistance against hacking the encoder parameters. 
  The possibility of such a hacking by means of 
correlation analysis of the optical field amplitudes at 
some points of the CTP was simulated by use of the 
model (2). It was established that determination of 
time lags τ1 and τ2 in FBL is impossible. However, 
under certain conditions, calculation of coefficients of 
autocorrelation ρii or cross-correlation ρij (i ≠ j) may 
allow one to reveal their difference τ1 – τ2. For 
instance, for such combinations of the angles, when 
Δ1 ≠ Δ2 ≠ 0 (Δ1 = 180î, Δ2 = 90î and Δ1 = 180î, 
Δ2 = 120î), dependences of auto- or cross-correlation 
coefficients are presented in Fig. 5. 

As is clear from Fig. 5b, the cross-correlation 
analysis of amplitudes at the points i, j, that are 
adjacent in the CTP [in accordance with the 
numeration (j = i + 1)], allows revealing the lag 
time difference Δte = ⏐te2 – te1⏐. Accuracy of Δte/τn 
is about ±1.25%. However, if the CTP point search 
order in the beam cross section is changed, it would 
become difficult to reveal the value of Δte by cross 
correlation analysis (Fig. 5c). In this relation, 
application of autocorrelation analysis is also 
inefficient (Fig. 5à). 

Theoretically, these regularities allow one to 

identify the CTP, i.å., to determine that points belong 
to one CTP (dividing points of the beam cross section 
into the CTP set), and the order of their numeration, 
but at the expense of long computation time. 

Let, for instance, the light field distribution in the 
beam cross section be presented by an m × N matrix, 
where m is the number of points in each of the N 

isomorphic CTP. Then in the worst circumstances for 

hacking, revealing of these parameters requires 
carrying out mN(mN – 1) ≈ mN2 calculations of the 
cross-correlation coefficients, both ρij and ρji. 
Nevertheless, even under most favorable conditions 
(m – 1) calculations of the functions ρi i+1(τcor) are 
necessary for decoding of only one CTP, and hence, 
of all the rest. Thus in using the stepper motor with 
accuracy of angular setting of 1′ (for example, a 
motor produced by Standa company) m = 21600 and 
in the case of the beam cross section area equal to 
1 cm2, the value of mN can be 104 as large. 

Unlike the model of a single feedback 

interferometer, the correlation analysis does not allow 
determining (hacking) the values of the lag times te1 
and te2 of an optical field in FBL1 and FBL2 of a 
DNRI. Thus, the dual feedback NRI is has higher 
resistance to hacking its parameters (by means of 
correlation analysis), rather than a single feedback one. 

 
Conclusions 

 
The mathematical models of the processes in a 

dual feedback NRI have been constructed. 
Formalization of the CTP-structure has been 
developed, describing the geometrical regularities of 
transitions from one point to another (shift of light 
beam in the transverse plane in a DNRI). 
Diversification of these CTP-structures is revealed 
depending on combinations of turn angles or on 
combinations of field shift values in the beam cross 
section in the FBLs of the DNRI. Two FBLs in the 
interferometer make it a multicomponent system and 
thus makes up the method to control the laser beam 
transformation. Manipulating the relations between 
the FBL-parameters, one can change the scheme  
of coupling the oscillators forming the DNRI, or 
configuration of interconnections in the case of a 
single oscillator. 

The simulation data demonstrate that the second 
feedback loop in a NRI essentially effects the 
bifurcation of nonlinear phase shifts in a DNRI. It is 
possible to control the complex dynamics in the 
model of DNRI (specifically, fractal dimensionality 
of the attractor) not only by changing the input 
radiation and nonlinearity parameter as in NRI, but 
also by choosing combinations for loss / transmission 
values and field turn angles in FBLs. The model of 
DNRI has advantages over the single feedback NRI 
from the point of view of its resistance stability to 
attempts of hacking the cryptosystem parameters. 
  All this proves further investigation of the 
DNRI model aimed at its optimization in developing 
the deterministic chaos generator as well as its 
application as an encoder in systems of confidential 
communication operated in the optical range, 
including the static operation mode. 
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