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The oscillating process of an inviscid liquid drop induced by the surface tension is considered 
in two-dimensional formulation. Drop oscillations are numerically investigated in a wide range of 
initial deformations. The comparisons with the linearized Rayleigh’s solution and mass conservation 
law confirm the reliability of the obtained results. The results obtained with the boundary-element 
method and the finite-difference realization are compared. 

 

Introduction 

Today many works are known devoted to the 
analysis of behavior of a liquid in the droplet state. 
However, the drop breakup under surface tension 
(i.e., self-deformation) has not been simulated until 
now and the critical values of drop deformation, 
resulting in the breakup, have not been determined 
either. Authors of the majority of works restrict 
themselves to small drop oscillations in two-
dimensional,2 axisymmetric,1,3 and 3D [Ref. 3] cases 
because of the effect of numerical instability of 
applied schemes.  

Almost all researchers in this field note, that 
exact results are possible to be obtained only at small 
surface deformations. Therefore, authors of each 
above work resort to various tricks to enhance the 
algorithm stability, such as redistribution of grid 
nodes along the free surface at each time step,2,3 
“smoothing” of the potential function along the free 
surface in a certain number of time steps by means of 
spline interpolation2 or Legendre polinomials,3 the 
imposing of additional conditions on potential values 
at free surface points,2 etc. 

The question arises how such interventions into 
numerical schemes distort the physics of the process. 
The prevailing “correction” of the algorithm is 
adjusting the potential value at the free boundary1 or 
dynamic boundary condition (Bernoulli integral). 
This is equivalent to adding a viscosity coefficient in 
the last equation, thus stabilizing the scheme, but 
resulting in some oscillation damping. As it was 
shown in Ref. 2, the adjustment of dynamic 
boundary conditions can be considered as accounting 
for the viscosity of the liquid under study; thus, the 
question about physical correspondence and 
rightfulness of the above operations is eliminated. 
Besides, the chosen algorithm for temporal surface 
evolution significantly affects the calculation 
stability and results. This question was considered in 
detail in Ref. 4 for the first time, where it was shown 
that the use of the third- and fourth-order Runge–

Kutta methods, conventionally stable in their 
properties, results in weak scheme dissipation and, 
hence, oscillations of a simulated ideal drop turn out 
to be weakly damping.   

Oscillations of an ideal liquid drop are studied 
in this work in a wide range of initial deformations. 
The comparison with the well-known Rayleigh work5 
is carried out. The obtained oscillation periods at 
various values of initial drop deformation confirm the 
conclusion6 about the growing oscillation period with 
increase of the initial deformation.  

Problem statement 

Consider the process of nonlinear oscillations of 
a drop of incompressible ideal liquid under the action 
of surface tension in the absence of gravity. The 
oscillating process of the infinite cylinder of the ideal 
liquid, having the elliptic cross section form with 
semi-axes a and b and quiescent at a start moment, is 
simulated in the plane approximation (Fig. 1). 

 

 
Fig. 1. Oscillations of the infinite volume of ideal liquid in 
vacuum. Solution region.  
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Movement of a drop of incompressible inviscid 
liquid in vacuum or gas of insignificant density can 
be described with the Laplace equation for the 
potential ϕ of the velocity v: 

 2 0, .∇ ϕ = = ∇ϕv  (1) 

The free surface boundary condition is  
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where κ is the free surface curvature; ρ is the density; 
α is the liquid surface stress factor. The free 
boundary changes in agreement with the kinematic  
condition,  written  in the Euler form  as  
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where f(t, θ), is the function describing the drop 
boundary. The drop is quiescent at a start moment 
and has the form of oblong ellipse with semi-axes a 
and b. The ratio of larger and smaller semi-axes 
k = b/a, k > 1 is later used as the characteristic of 
the initial deformation. The initial potential is 

 ϕ = 0. (4) 

As the characteristic scales, the values are taken  
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where R is the effective radius of the circle area 
equal to the area of an ellipse representing the initial 
free boundary. Thus, in this problem statement, the 
only parameter determining the character of the 
stream and characteristics of free surface oscillations 
is its initial position.  

Equation (2) in dimensionless form is  
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Method of solution  

To solve the problem by the boundary-element 
method (BEM), the passage from the above described 
differential statement to the boundary integral one is 
carried out according to the approach given in Ref. 7. 
To immediately obtain and then solve the singular 
boundary integral equation, the indirect BEM is 
used. 

Potential and velocity vector’s components are 
calculated at the free boundary. To find its new 
position, the finite-difference quantization of Eq. (3) 
is used, where the difference scheme with counter-
stream differences is applied8: 
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Potential at the new free boundary position is 
defined by means of time and space quantization of 
the Cauchy–Lagrange integral6: 
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Time step tΔ  is bounded from above by the 
Courant condition 

 min max/ ,t S VΔ ≤ Δ  (10) 

where ΔSmin is the minimal element’s length; Vmax is 
the maximal velocity attained at some element. As 
the study has shown, Δt = 0.001 is quite acceptable 
at small initial deformations and at the first 
calculation stage. At large initial deformations 
(beginning from k = 1.5), the time step is chosen 
automatically by Eq. (10). 

To solve the above problem (1), (2), (4), and 
(6) by the BEM, the coordinate transformation is 
carried out, at which the domain boundary is 
transformed to a unit-radius circle:  

 ,θ = θ  .
( , )

r

f t
ξ =

θ
 (11) 

Equations (1) and (6) are used in new 
coordinates. To calculate the potential from the 
Laplace equation, the Gauss–Seidel scheme is used, 
and to calculate velocities on the free surface – the 
following equations: 
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To find a new free surface position, the finite-
difference quantization of the kinematic condition (3) 
in form (7) is used with counter-stream difference 
scheme (8). The potential at the new free boundary 
position is found according to Eq. (9). 

Calculation results 

The finite-difference calculations were carried 
out on the grids with Nr = 6, 12, 18, 24, 36, 48 
equal partitions along r and Nθ = 12, 18, 24, 48 
equal elements toward θ. When potential calculating 
by the Laplace equation, two schemes were approved: 
 1) Gauss–Seidel scheme and 

2) longitudinal-transversal sweep scheme 
(LTS).9 

Both schemes are tested on the problem of 
potential distribution in an infinitely conductive 
unit-radius sphere, which has an analytical solution. 
 Table 1 presents the results of test calculations, 
in which the rate of iterative process convergence 
(the number of iterations N) has been estimated on 
different grids when varying the iteration parameter τ 
for the longitudinal-transversal sweep scheme (LTS), 
as well as the rate of convergence of the Gauss–
Seidel method on the same grids. The convergence 
has been estimated to ε = 10–6. 



M.N. Shtokolova and V.A. Yakutenok Vol. 20,  No. 7 /July  2007/ Atmos. Oceanic Opt.  559 
 

 

As is seen from the above results, a special 
choice of the parameter τ allows a high rate of 
iterative process convergence in LTS to be achieved; 
however, there are grids on which the iteration 
process is non-convergent due to lack of diagonal 
transformation in the matrix, e.g., the grid Nr = 6, 
Nθ = 12 at τ = 0.5. Calculations on finer grids (up to 
Nr = 64, Nθ = 64) have shown the dependence N(τ) 
similar to Nr = 24, Nθ = 36. 

 

Table 1. Test LTS calculation  

LTS, 

Number of iterations N, grid Nr × Nθ 
Parameter 

τ  
6 × 6 12 × 6 6 × 12 12 × 12 12 × 24 24 × 24 24 × 36

0.0001 5450 5380 5450 5390 5390 10040 10040

0.0005 1260 1250 1260 1250 1250 2350 2350

0.0010 670 670 660 670 670 1250 1250

0.0050 160 160 160 160 160 300 300 

0.0100 90 90 90 90 90 160 160 

0.0500 50 150 50 150 150 50 50 

0.1000 90 280 90 – – 40 40 

Gauss–
Seidel 
scheme 120 270 260 440 1140 1680 2950

 

The initial problem was solved using both 
Gauss–Seidel scheme and the LTS algorithm. 
Oscillation periods and sequences of the free surface 
shapes, obtained with different schemes, coincide 
within the range of initial deformations 
1.005 ≤ k ≤ 2.0. Note that the calculation time of one 
oscillation period is similar for both schemes, despite 
the results shown in Table 1. This can be explained 
by the fact that the number of iterations at each next 
time step decreases much more rapidly for the 
Gauss–Seidel method than for the LTS one (Fig. 2). 

 

 

Fig. 2. Numbers of iterations as functions of calculation 
time: curve 1 and 2 correspond to the Gauss–Seidel scheme, 
curves 3 and 4 – to the LTS scheme; Δt = 10–3 (1 and 3), 
Δt = 10–4 (2 and 4); ε = 10–6. 

When numerical algorithm implementing, the 
question about the choice of optimal time step Δt is 
of importance. The choice criterion is the Courant 
condition (10). In basic calculations, Δt was equal 
to 0.001 at the first time step, then Δt was chosen 
automatically according to Eq. (10).  

First, when calculating a new potential value on 
the free surface by Eq. (9), the curvature κn+1 was 
calculated at a new free boundary position. In this 
case, the calculation of oscillations with initial 
deformation k > 1.5 turns out to be impossible 
because of the zigzag-wise instability at the free 
boundary. This effect can be avoided if to use the 
half-sum of curvatures in Eq. (9) (κn + 

κ
n+1)/2, where 

κ
n+1 is the curvature calculated at a new position of 

the free boundary and κn is the curvature from the 
previous “time layer.” It should be noted that this 
modification of the scheme changes neither oscillation 
periods no observed free surface shapes. 

A series of calculations with different 
magnitudes of initial axes ratio in the range 
1.002 ≤ k ≤ 2.0 was carried out by the boundary-
element method.7 In this case, the boundary was 
partitioned to N = 96 constant elements. In 
calculations with N > 96 any differences in period 
values or free surface shapes were not observed. The 
evolution of the free surface during oscillating is 
shown in Fig. 3. 

In this work, when simulating drop oscillations 
with both LTS and BEM, additional “smoothing” 
procedures for the potential function at the free 
boundary and for the function describing the 
boundary were not used (like, for example, in 
Refs. 1–3), because the imposition of such artificial 
conditions can distort the simulation results. In this 
case, we succeeded to simulate the inviscid drop 
oscillating process in a wide enough range of initial 
drop deformations (up to k = 1.5 for LTS and up to 
k = 2.0 for BEM).  

According to classic Rayleigh result,5 the 
formula 

 T = 2π[n(n – 1)(n + 2)]–1/2 (13) 

takes place for small oscillations of inviscid liquid in 
axisymmetric statement. Thus, for n = 2 period 
T = 2.2214. It is evident from Fig. 3 that 
deformation of the free boundary at t = T/2, i.e., a 
half-period of oscillations, corresponds to its initial 
position. The difference in the initial shape and those 
at t = T/2 is observed at k = 1.8. It is seen from 
Table 2 that T increases with the increase of initial 
deformation k. At small initial deformations 
(1.002 ≤ k ≤ 1.01), the oscillation period of the 
considered plane approximation differs from the 
period calculated by Eq. (13) by 14.8%. The area of 
considered cross section remained invariable to within 
0.002% during the oscillating process. 

According to the study, beginning from k = 1.9, 
dumb-bells-like free surface shapes are observed 
during oscillating (see Fig. 3). 
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Fig. 3. Free surface shapes, 2D case. Initial deformation k = 1.2 (à), 1.5 (b), 1.8 (c), 1.9 (d). 
 

Table 2. Results of calculations with boundary-element 
and Finite-differences (FD) methods  

Period T 
Semi-axes ratio k 

BEM FD 

1.01 2.55 2.47 
1.10 2.57 2.48 
1.20 2.61 2.50 
1.50 2.72 2.56 
1.70 2.79 2.60 
1.80 2.82 2.62 

 

Finally, oscillation periods in a wide range of 
initial deformations are also obtained from LTS 
calculations (see Table 2). Free surface shapes, 
obtained with the LTS, are not given because of their 
perfect analogy with those obtained earlier with 
BEM (see Fig. 3). The oscillation periods obtained 
by both methods confirm the conclusions of Ref. 6, 
where it has been shown, that the oscillation period 
of an inviscid drop increases with the oscillation 
amplitude increase; this is due to initial drop 
deformation in the case under study. 
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