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An original model of turbulent pollutant transport is presented. Algebraic expressions for 
turbulent mass flows <cu>, <cv>, <cw> in the form of simple gradient closure relations are derived 
within this model on the assumption of near-equilibrium turbulence. The model is tested with 
fundamental experimental data for various conditions of atmospheric stratification, dynamics of the 
atmospheric boundary layer, and turbulent dissipation of a pollutant from a surface source. The 
obtained relationships for turbulent mass flows are used in the model of pollutant transport taking 
into account the chemical transformations of transported substances in order to study the formation 
and dissipation of secondary pollutants in the air layer over a city and its suburbs. 

 
Recently, works on the theory of atmospheric 

diffusion and pollutant dissipation based on the 
results of integration of the turbulent diffusion 
equation have gained a considerable development.1–3 
An advantage of this method is a possibility of taking 
into account the chemical reactions between 
pollutant components with the aid of atmospheric 
chemistry models.4,5 This allows a detailed analysis of 
the anthropogenic impact on the environment on 
local scales. If computer systems with the parallel 
architecture significantly shortening the computational 
time for models of this level are used, the feasibility 
of obtaining a prompt and rather detailed prediction 
of evolution of an ecological situation on local and 
regional scales seems quite attractive.6 

The pollutant concentration within the framework 
of the Euler continual approach is calculated by the 
model of turbulent diffusion including the transport 
equation2–5: 
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describing the advection, turbulent diffusion, pollution 
sources, and chemical reactions.1 Here C(t, x, y, z), 
c(t, x, y, z) are the average and pulsation components 
of the pollutant concentration; (U, V), (u, v) are the 
average and pulsation horizontal components of the 
wind vector; Wc, wc are the average and pulsation 
components of the pollutant velocity; S is the source 
term representing pollutant emissions into the 
atmosphere; R stands for chemical reactions with 
pollutant components in air; t is the time; (x, y, z) are 
coordinates. 

Equation (1) is not closed, since, in addition  
to the sought concentration C, it includes other 

unknowns, namely, the correlations <cu>, <cv>, and 
<cwc> representing the turbulent diffusion of a 

pollutant and expressed through higher-order moments, 
which are very difficult to determine.7 Nowadays the 
general understanding of this problem is achieved, 
and the approaches and methods (for example, the 

approach based on the Boussinesq gradient 
relationships2,7) are determined. In many simple 
cases, the use of these methods yields an acceptable 
result. However, for calculation of more complex 
processes, in particular, atmospheric ones, models based 
on equations for higher-order moments are required. 
  This paper proposes an original method for 
closure of the pollutant transport equation, whose 
essence consists in the following. The prognostic 
equations for determination of correlations <cuj> can 
be written in the form9 (hereinafter we will use the 
index and component forms: (u, v, wc) = (u1, u2, u3) = uj; 
(x, y, z) = (x1, x2, x3); j = 1, 2, 3): 
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where Θ, θ are the average and pulsation components 
of the potential temperature. 

In the case of a near-equilibrium process, 
Equation (2) takes the form 
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According to Ref. 10, for ∏j – εj we accept 
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where F is the function determining the surface 
influence on the flow turbulent structure; C1θ = 3.0, 
C2θ = 0.346, C3θ = 0.333, and D1C = 0.806 are empiric 

constants; Dl C kτ =  is the time scale of turbulent 

pulsations; g = (gj) = (0, 0, –g) is the free-fall 
acceleration vector; the last term in Eq. (4) takes into 
account the redistribution of turbulent mass flows 
near the surface; δji is the Kronecker delta. 

With allowance for Eqs. (4) and (3) take the form 
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Assuming that the temperature and wind velocity 
are functions only of time and the vertical coordinate 
and neglecting the vertical component of the wind 
velocity (U3 = 0), we can solve Eq. (3) for <cuj>: 
  at j = 1: 
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at j = 2: 
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at j = 3: 
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To find the unknown correlation between 

temperature and concentration pulsations <cθ> 

entering into Eq. (8), we derive the differential 
equation in the form8,9,11: 
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It should be noted that in the case of slightly 
nonequilibrium turbulence, when the turbulence 
generation is nearly compensated by its dissipation, 
from Eq. (9) we can obtain 
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With allowance for Eq. (10), Equation (8) 
acquires the form 
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Upon substitution of Eq. (11) into Eqs. (6) and 
(7), we obtain the equations for turbulent mass  
flows <cu>, <cv>, and <cwc>, whose forms 
resemble the Boussinesq gradient closure equations: 

( )< > – .i ij jcu K C x= ∂ ∂  As they are substituted into 

the transport equation (1), there appear mixed 
derivatives, whose influence can be significant.2 

Turbulent heat and momentum fluxes entering 
the obtained equations (6)–(8) [or (11)] are 
determined with the aid of algebraic relationships 
presented in Ref. 12. 

It should be also noted that the correlations of 
concentration and temperature pulsations <cθ> can be 

calculated with the use of the transport equation (9). 
  Meteorological parameters and turbulent 
characteristics necessary for the transport model are 
determined using the nonstationary model in the 
approximation of the homogeneous atmospheric 
boundary layer (ABL).13 In this case, the three-
parameter “k – l – <θ

2>” model of turbulence is 
applied. This model includes the prognostic equations 
for the energy and the scale of turbulence, as well as 
for the square temperature pulsations13: 

 –< > –< >
k U V

uw vw
t z z

∂ ∂ ∂
= +

∂ ∂ ∂
 

 

3

2

< > – ;
D

e

g k C k
w kl

z z l

∂ ∂⎛ ⎞
+ θ + σ⎜ ⎟
Θ ∂ ∂⎝ ⎠

 (12) 

 1 –< > –< > < >l

l U V g l
C uw vw w

t z z k

∂ ∂ ∂⎛ ⎞
= + θ +⎜ ⎟

∂ ∂ ∂ Θ⎝ ⎠
 

 
2

2 1– ,e l

l l
kl C k

z z z

⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞
+ σ + ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ κ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

 (13) 

 
2 2

2< > < >
< > –C kl w

t z z
θ

⎛ ⎞∂ θ ∂ ∂ θ
= ⎜ ⎟

∂ ∂ ∂⎝ ⎠
 

 
2

< >
–2< > – 2 .w

z Cθ

∂Θ θ
θ

∂ τ
 (14) 

Here k is the kinetic energy of turbulence; l is the 
integral scale of turbulence; σe = 0.54, Cl1 = –0.12, 
Cl2 = 0.2, CD = 0.19, and Cθ = 3.0 are numerical 
coefficients; κ = 0.41. Turbulent momentum <uw>, 
<vw> and heat <wθ> fluxes are determined with the 
aid of algebraic equations.12 
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The initial and boundary conditions, as well as 
the numerical method for solution of the differential 
equations of pollutant transport, are described in 
detail in Refs. 4 and 13. 

An important parameter characterizing the state 
of the planetary boundary layer is thermal 
stratification (the character of the vertical 
distribution of the air temperature), which affects 
markedly the turbulent structure of the atmospheric 
boundary layer. Therefore, the model of homogeneous 
ABL was used for test calculations of turbulent 
stresses <u2>, <v2>, <w2>, temperature variance 
<θ

2>, turbulent heat <wθ> and momentum <uw>, 
<vw> fluxes for different regimes of ABL 
stratification.11 The testing was carried out with the 
use of experimental data, results of other 
authors,10,14–16 and calculations based on a simpler 
approach, namely, closure of the system of fluid 
dynamics equations in the form of the Boussinesq 
gradient relationships and turbulent diffusion 
relationships.8,9 

The profiles of the normal turbulent stresses 

<w2>, <u2>, <v2> (as functions of the vertical 
coordinate normalized to the height of the 

computational area H) calculated by the algebraic 
model and by the model with the Boussinesq 
relationships for the conditions of the boundary layer 
with neutral stratification and normalized to the 
square dynamic velocity v* are shown in Figs. 1a–c. 
  The conditions of the ideal neutral boundary 
layer are observed very rarely in the atmosphere, and 
that is why there is not a complete data set for 
testing the model. However, it was indicated in 
Ref. 10 that the results of Refs. 17 and 18 (also 
shown in Fig. 1) are most suitable. 

As was found in Ref. 10, the considering of the 
wall effects decreases the flux stresses and leads to 
the higher-quality prediction for the horizontal  
 

components of the stresses. That is why from here on 
the wall effects are taken into account in calculations 
by the algebraic model. In the case of the vertical 
normal stress <w2>, the contribution of the wall 
effects is not so unambiguous, but even in this case 
the calculated profile falls within the experimental 
data. Generally, the profiles of normal turbulent 
stresses obtained by the algebraic model are in a good 
agreement with the experimental findings and with 
the results of simulation.10 

The profiles of the kinetic energy of turbulence 
are similar for the both versions and show somewhat 
underestimated values near the surface. Above the 
surface layer, these models, to the contrary, yield 
overestimated results compared to the model from 
Ref. 10 (Fig. 1d). 

The experimental data and the calculated results 

for the kinetic energy of turbulence k were not 
initially presented in Ref. 10, but they were obtained 
as a result of the processing of values for the normal 
turbulent stresses through the use of the well-known 
relationship 

 ( )2 2 2
< > < > < > /2.k u v w= + +  

The results of calculation of the stable boundary 
layer parameters in comparison with the experimental 
data19,20

 and the calculations10
 as a function of height 

normalized to the height of the surface layer hs are 
shown in Fig. 2. In this case, the height of the 
surface layer is determined as a height, at which the 
tangential turbulent stress amounts to 5% of its value 
on the surface. 

The profiles of the horizontal normal stress <u2> 
(Fig. 2a) with allowance for the wall effects are in a 
good agreement with the measurements and 
calculations.10 For <w2> (Fig. 2b) we also obtained 
the decrease in the turbulent intensity with height. 
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Fig. 1. Normal turbulent stresses <w
2>, <u

2>, <v
2> (a, b, c) and kinetic energy of turbulence (d) as functions of 

dimensionless height. Calculation by the proposed algebraic model (curve 1), calculation by the model with the Boussinesq 
relationships (2), and calculation from Ref. 10 (1). Signs correspond to experimental data from Ref. 17 (4) and Ref. 18 (5). 
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Fig. 2. Normal turbulent stresses <u
2>, <w

2> (a, b), dissipation of the kinetic energy of turbulence (c), and the vertical heat 
flux (d) as functions of the dimensionless height. Designations are the same as in Fig. 1. Signs correspond to experimental 
data from Ref. 19 (4) and Ref. 20 (5). 

 

 

The vertical distribution of dissipation of the 
kinetic energy of turbulence and the vertical heat flux 

for the considered case are also in a good agreement 
with the data of field observations (Figs. 2c and d). 
  The results of calculation for the convective 
boundary layer by the model presented in comparison 
with the experimental data21 are shown in Fig. 3. 
  The profiles of turbulent parameters are plotted 
as functions of the height normalized to the height of 
the inversion layer zi. In calculations, zi is determined 
as a height, at which the horizontal heat flux <θw> 
achieves the minimal negative value.10 

The profile of the turbulent stresses <w2> 

normalized to the convective scale of velocity 

3
* 0 iw gq z= β  (Fig. 3a) achieves the maximal value  

 

≅ 0.35 at the height z/zi = 0.25, as well as in both 
the theoretical [Ref. 15] and experimental [Ref. 22] 
works. Here q0 is the heat flux on the surface; 
β = 1/Θ is the coefficient of volumetric expansion. 
  The dimensionless temperature variance 

<θ2>/(q0/w*)
2 decreases fast with the height from a 

value of about 40 near the surface to the minimum in 
the upper part of the boundary layer (Fig. 3b), and 
at high altitudes <θ2>/(q0/w*)

2 increases roughly up 
to 10–20 near the bottom boundary of the inversion 
layer10,15 with the following decrease. 

The adequate reconstruction of the dissipation of 
the turbulence kinetic energy by the model follows 
from the comparison of the calculated profile with 
the experimental and theoretical data10,15

 (Fig. 3c). 
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Fig. 3. Turbulent stress <w
2> (a), variance of potential temperature <θ

2> (b), dissipation of the kinetic energy of turbulence 
(c), and vertical heat flux (d). Designations are the same as in Fig. 1. Signs correspond to experimental data from Ref. 19 (4) 
and Ref. 20 (5). 
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Figure 3d depicts the profile of the vertical 
turbulent heat flux <θw> normalized to the heat flux 
on the surface. The shape of the profiles clearly 
indicates the influence of the entrainment processes 
between the heights of 0.6zi and 1.0zi. Above the 
inversion layer, the flux quickly vanishes, which is in 
agreement with the data of the laboratory experiment22 
and the calculations of other authors.10,15 

The test calculations of the nonstationary 

boundary layer dynamics over a homogeneous surface 
were preformed for the results of the Wangara 

Experiment, being one of the most successful and 
reliable field experiments on the study of the 

atmospheric boundary layer. The data of this experiment 
allow us to test the model for the conditions of 
nonstationary evolution of the atmospheric boundary 
layer over a homogeneous surface.23 

Figure 4 compares the results of calculation by 
the model proposed and by the model using the 
Boussinesq gradient closure relationships and the 
turbulent diffusion coefficient with the data obtained 
in the Wangara Experiment.23 It is clearly seen that 
the explicit anisotropic model better reconstructs the 
fine dynamic and thermal structure of ABL near the  
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Fig. 4. Variations of wind velocity, dynamic velocity, and 
convective heat flux on the Earth’s surface during the 
Wangara Experiment (33rd–34th days). 

surface, while the use of the approach based on the 
concept of turbulent diffusion is inefficient in this case. 
  The further testing of the model was performed 
for the problem of pollutant transport and dissipation 
from an elevated continuous source in the convective 
boundary layer. 

In developed convective ABL, a pollutant 
emitted by a surface continuous source moves in 
parallel with the surface, gradually lifting in the 
atmospheric mixing layer. A pollutant emitted by a 
source elevated above the surface is transported 
downward to the surface. This striking feature of the 
pollutant diffusion from an elevated source reflects 
the existence of the prevalent process of descent of a 
pollutant jet over the process of entrainment of the 
pollutant matter into smaller, quickly moving 
formations. This behavior is caused by the asymmetry 
of the probability density function of the vertical 
velocity of turbulent pulsations <w2>, having the 
pronounced negative mode.1,15 

The results of simulation of the pollutant 
dissipation from an elevated source with the height 
zs = 0.24zi are shown in Fig. 5 in comparison with  
the data of the field experiment.24 Here Cy

*
 = 

= Cy(x, z)ziUs/Qi is the dimensionless pollutant 
concentration; zi is the height of the inversion layer; 
the axis x* is equivalent to the dimensionless distance 
in the downstream direction along the flow from the 
source x*

 = xw*/Uszi; z*
 = z/zi is the dimensionless 

vertical coordinate; Us is the wind velocity at the 
height of the source; Cy(x, y) is the pollutant 
concentration averaged over the vertical coordinate 
Oy normal to the direction of the wind vector; Qi is 
the source emission rate. The results of calculations 
by the model are in a good agreement with the 
experimental results. First, the plume from the 
elevated source sinks and touches the Earth’s surface 
between 0.5x* and 1.0x*, and then it begins to rise. 
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Fig. 5. Isolines of the dimensionless pollutant concentration 
Cy

* in the plane OX*z*; source height zs = 0.24zi; 
experimental results24 (a) and result of simulation with the 
use of algebraic relationships (b). 
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The conditions used in the calculations and the 
data for comparisons are borrowed from Ref. 15. 

The dissipation of a pollutant from a near-surface 
source with the height zs = 0.067zi is shown in Fig. 6. 
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Fig. 6. Ioslines of dimensionless concentration of a pollutant 
from a source with the height zs = 0.067zi; experimental 
results (a),24 results of simulation by the model proposed (b), 
and result of simulation with the use of the Boussinesq 
relationships (c). 

 

The results of calculations by the model proposed 
are in a good agreement with the experimental 
results, while the locally isotropic model using the 
Boussinesq closure relationships (Fig. 6c) under these 
conditions fails to reconstruct the fine structure of 
the turbulent dissipation of a pollutant. 

The results of testing of the proposed numerical 
model based on the original scheme of closure of the 
transport equation and on the algebraic relationships 
for turbulent momentum, heat, and mass fluxes have 
demonstrated a good agreement with the results of 
field observations under different conditions of ABL 
temperature stratification and the Wangara Experiment. 
For the cases of neutral and stable stratification, the 
approach proposed is comparable with the Boussinesq 
gradient relationships. However, in the case of the 
convective boundary layer and nonstationary changes 
in ABL, for example, during a day, the Boussinesq 
approach appears to be inefficient (see Fig. 4). When 
the pollutant dissipation from a continuous source in 
convective ABL is considered, the Boussinesq approach 
turns out to be inapplicable (see Fig. 6). 

The relationships proposed for closure of the 
transport equation added by algebraic equations are 
used in the model of pollutant transport4,11

 and can be 

applied to a wide range of similar transport problems. 
  

Since the application of high-accuracy models of 
pollutant transport imposes additional requirements 
on the quality of modeling the turbulent transport in 
the surface atmospheric layer, the use of algebraic 
models is preferable. 
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