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The group of invariant transformations for a system of differential equations describing 

evolution processes of plasma of the high-current phase of repetitively pulsed gas-discharge lasers is 
found. Transformation invariants are determined and used to find the dependence of discharge 

resistance on time and discharge parameters. It is shown that at certain invariant values the 
determined theoretical time dependence of the discharge plasma resistance is in good agreement with 
the experimental one. 

 

Numerous publications are devoted to the study 
of low-temperature nonisothermal pulsed nanosecond 
gas discharges. Such discharges are widely used in 
various fields of science and technology. Despite  
the existence of authoritative monographs on  

the problem,1–3
 opinions on the methods of modeling 

plasma parameters and dynamics at different periods 
of development of such discharges are still 
contradictory. 

Voltage-time characteristics of discharges of 
pulsed gas-discharge lasers (GDL) with different 
active media are known to be similar in time, if 
identical pumping schemes are used. The presence of 
this group sign is indicative of the possibility  
of using group analysis methods for the search of 
invariant (scale) transformations of the discharge 
plasma and the following determination of typical 
time dependences of plasma parameters for definite 
phases of the discharge evolution. 

 

Group analysis of the system  
of differential equations describing 
kinetics of gas-discharge plasma 
 
Consider the plasma at the high-current stage of 

repetitively pulsed longitudinal low-temperature gas 
discharge with constant chemical composition under 
conditions of a high prepulse electron concentration 
and a pulse length of several hundreds of 
nanoseconds. It is known3 that the evolution of such 
plasma is due to the volume ionization of normal and 
excited states of gas atoms by electrons accelerated 
by an external pulse of the electric field. The 
processes of plasma decay due to ambipolar diffusion 
and collisional-radiative recombination proceed much 
slower and can be neglected in the case of pulse 
currents shorter than several hundreds of nanoseconds. 
  Write the system of differential equations 
describing the kinetics of plasma of the positive 
column of pulsed discharge in a gas in the 

dimensionless form: 
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where 
0

itτ = ν  is the reduced time of the discharge 

development; 0

iν  is the total ionization frequency of 

some easily ionized admixture at the moment of 
beginning of the discharge high-current stage; 

* 0

ii ik kν =ν ν  is the reduced frequency of single 

ionization of atoms in admixture by electrons from 

the state k; 
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inelastic collisions of electrons with admixture atoms 
and elastic collisions with buffer gas molecules, 

respectively; * 0

0 en n n=  is the concentration of atoms 

of an easily ionized admixture reduced to the electron 

concentration at the beginning of the discharge  

high-current stage; * * *
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* 0

ek kn n n=  are the reduced concentrations of gas 

atoms, plasma electrons, and atoms excited to the 

level k, respectively; *

0iε = ε ε  is the reduced mean 

energy of plasma electrons; εki is the energy of 
ionization of gas atoms from the level k; E(τ) is the 
change in the electric field strength at the discharge 
plasma during the current pulse. 

Using equations of the system (1)–(3), we can 
transform the equation of energy balance of the 
electron gas (3): 
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It is seen that the variation of ε*
 in time does not 

depend explicitly on the electron concentration, but 
is determined by its initial value and by the law of 
the electric field variation. Similarly to Eq. (3a), 
other kinetic equations of the system are first-order 
linear differential equations with coefficients depending 

on the electron energy and the concentration of excited 
atoms, that is, are indirectly time dependent. 

Determine the invariant transformations allowed 
for the system of differential equations of plasma 
kinetics. The reduced total ionization frequency of a 

gas *

i
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ν∑ is designated as 
*

i ;ν  and the reduced 

frequency of excitation of the mth level 
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m
ν  Using the algorithm of searching 

for group transformations of a system of differential 
equations,4 we obtain that the system of kinetic 
equations permits the transformation group: 
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Invariants of this transformation for the kinetic 
equations of discharge plasma for the system (1) and 

(2) are: 
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It should be noted that when deriving the invariants 
for equations (1) and (2), we impose no conditions 
on the mean electron energy and the form of the 
electron distribution function. Similarly, we can find 
the group of invariant transformations for all 
equations of the system: 
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All possible changes of variables τ, *

e,n  
*
,kn  

*

i ,ν  

*
,kν  ε*, permitted by the system, form the Lie group. 

Automodel changes form its one-parameter stretching 
subgroup. The set of first integrals of the equation 
[invariants of this transformation for kinetic equations 
of the discharge plasma for the system (1)–(3)] 

0Xϕ =�  is the following: 
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5 .I = ε τ  (5) 

It should be noted that the values of the 
invariants I2 – I4 of transformation of the system (5) 
coincide with those of the invariants of transformation 
of the Boltzmann equations for different plasma 
particles,5,6 while the invariants  

 *

1 i ,I = τν  *

5I = ε τ  

determine the dynamic similarity of evolution of the 
discharge plasma. 

The automodel solution of the equations of 
system (1)–(3) permitting the stretching group has 
the form  
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ψ is the new sought function. 
The form of the sought function ψ depends on 

the pumping scheme, which forms the pump pulse 
and determines the variation of the electron 
temperature during the discharge evolution. For the 
same pumping scheme (I4 = idem), ψ is identical, but 
the dependences of the plasma parameters described 
by the automodel solutions of the equations undergo 
the stretching in time and in amplitude proportionally 
to the change in the scales (initial conditions): 

0 0 0 0

i e 0i, , , , .k kn nν ν ε  
 

Law of discharge plasma resistance 
variation 

 

Further, concentrate our attention on the 
discharge with a low degree of ionization and neglect 
the electron heating of the gas. It is known4 that if a 
differential equation has invariants, then it can be 
solved analytically. 

From Eq. (1) we can find the law of the discharge 
gap resistance variation during the current pulse 
using the invariant I1 = τνi. Integrate Eq. (1) 
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and obtain 
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where 0

it′ ′τ = ν  is the delay of the beginning of the 

high-current (arc) discharge phase after the moment 
of the voltage applying to the discharge gap (t = 0). 
Then the plasma resistance of the cylindrical 
discharge with the length l and the cross section S 
can be represented as  
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where el el
′ν ν  is denoted as *

el;ν  R′ is the plasma 

resistance at the moment t′. 



A.V. Kravchenko and V.F. Kravchenko Vol. 20,  No. 8 /August  2007/ Atmos. Oceanic Opt.  683 
 

 

In the absence of the buffer gas, * *
ielν = ν  and 

dependence (8) takes the form 
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Comparison with experimental results 
 
Figure 1 shows the typical voltage-time 

characteristics of the longitudinal discharge of 
repetitively pulsed gas-discharge barium-vapor lasers 
with a peaking-capacitor pump source.3,7 
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Fig. 1. Oscillograms of the current pulse (1), voltage drop 
across the plasma (2), active resistance R(ti) (3) and its 
approximation (4). 

 

A discharge tube with a discharge length of 
40 cm and an inner diameter of 20 mm was studied. 
A TGII-1000/25 hydrogen thyratron was used as a 
switch. The inductance of the discharge circuit was 
0.7 μH. The pressure of the buffer gas neon was 
15 Torr, the capacity of the reservoir capacitor 
amounted to 2500 pF, and that of the peaking 
capacitor was 1000 pF. The pulse repetition 
frequency was 8 kHz. The technique of measurement 
of the current I and the voltage across the discharge 
gap Uc was similar to that described in Ref. 1. The 
voltage across the discharge gap Ur was calculated as 
a difference between the voltage, measured across the 
peaking capacitor, and the calculated voltage of the 
inductance coil UL. The slope of the current 
variation at any time was calculated through 
differentiation of the current curve and extrapolation 
by a polynomial based on seven experimental points. 
For this purpose, oscillograms of current pulses, as 
well as those of voltage, were divided into time 
intervals, each containing seven points. Instantaneous 
values of discharge resistance in each interval at the 
high-current stage were calculated as  

 R(ti) = Ur(ti)/I(ti), i = 7. 

The result of approximation of the discharge 
resistance by Eq. (8) is shown in Fig. 1 by solid 
curve 4. The best agreement with the experiment is  
 

observed at R′ = (650 ± 60) Ω, t′ = (10 ± 0.1) ns, and 
I1 = 1.5. As the current pulse repetition frequency 
increases up to 10 kHz, the value of R′ keeps within 
the error of approximation at t′ = 9.3 ns. The study 
of resistance of the GDL plasma with other active 
media of the copper-vapor laser and the strontium 
laser with the buffer gas neon has shown that the 
best approximation of experimental results by Eq. (8) 
is achieved at I1 = 1.5–1.4. The calculated values of 

0

1 iI t′= ν  for the studied GDL active media are close 

to unity. 

The variation of *

elν  for neon during a pulse is 

proportional to ε  [Ref. 8]. Taking into account 

Eq. (5), this gives the change in time as 1 .t  

Consequently, the theoretical dependence of the 
discharge resistance on time coincides with the 
experimental one. This indicates that the dynamics of 
plasma evolution is determined by the ionization 
frequency of an easily ionized admixture of the active 
medium. 

 

Conclusions 
 

Thus, the experimentally observed variation of 
the plasma resistance in repetitively pulsed metal-
vapor GDLs during the pump pulse is described by 
the theoretical time dependence of the discharge 
plasma determined from the condition of invariance 
of the system of kinetic equations to the scale 
transformation (5). 

Since the theoretical time dependence of the 
discharge resistance depends only on the integral of 
the I1 equation for the electron concentration, it can 
be used for modeling of electric characteristics of 
discharge and for modeling of GDLs with different 
pump sources. 
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