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The theory for saturated magnetic dipole and electric quadrupole absorption of 

monochromatic radiation at dipole-forbidden transitions of gas media is developed. It is shown that 
in the case of quasi-resonant polarizability, when the radiation frequency is close to the frequency of 
the transition from the upper level of a forbidden transition to the next upper state, the line shift for 
the absorption at dipole-forbidden transition can reach a large magnitude. The possibility of radiation 
amplification without population inversion at dipole-forbidden and quasi-resonant transitions is 
predicted for sufficiently high intensities and small frequency detuning from the eigenfrequency of 
quasi-resonant transition. 

 

Introduction 

Magnetic dipole and electric quadrupole 
absorption at forbidden electric dipole transitions in 
atomic gases and iron vapors can be quite noticeable 
and saturable at small intensities of resonance 
radiation in case of small atom densities. The usual 
reason is long lifetimes of forbidden transition levels, 
which can be three order of magnitude longer than 
lifetimes of dipole-allowed transition levels.1 This 
compensates a small value of radiation interaction 
with forbidden transitions. The values of atomic 
magnetic dipole and electric quadrupole moments can 
be determined on the base of quantitative 
measurements of absorption at forbidden transitions. 
Radiation, resonant to a forbidden transition, can be 
also used as a closed field in problems of nonlinear 
optics and nonlinear spectroscopy, based on ring 
frequency mixing.2,3 Assess the order of magnitude of 
saturation intensity Isat from the condition κ = 1 (κ is 
the saturation parameter) considering the saturation 
as magnetic dipole: 
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where I is the radiation intensity; B is the light wave 
magnetic induction; γ and Γ are the longitudinal and 
transversal relaxation constants of the forbidden 
transition; m is the matrix element of the magnetic 
dipole moment operator; c is the light speed; � is the 

Planck constant. Taking m ∼ μB ∼ 10–20 CGSE (μB is 
the Bohr magneton) and γ ∼ Γ ∼ 107 s–1, we obtain 
Isat ∼ 1 W/cm2 from Eq. (1). Pulsed lasers, used in 
spectroscopy of gaseous media, are often have 
radiation intensity of about 1 MW/cm2 and higher.  
 Thus, nonlinear spectroscopy of forbidden atom 
transitions is quite possible. In view of this, there 

appears a necessity of proper description of saturated 
absorption at forbidden transitions on the base of 
quantum kinetic equations for the medium statistical 
matrix, commonly used in nonlinear spectroscopy. 
Such description is absent in the available literature. 
A probable reason is nontrivial character of 
radiation–forbidden transition interaction, where 
electric and magnetic light wave components 
participate simultaneously. Field vector potential and 
current density are widely used in this case. 
However, such description for nonresonance 
interactions, e.g., in case of stimulated Raman 
scattering, produces results essentially differing from 
those obtained from the description based on 
observable electric field strength, magnetic induction, 
as well as magnetic dipole and electric quadrupole 
atom moments.4–6 Physical nature of this difference is 
still unknown.  

Besides, multipole atom–radiation field 
interaction is considered in the literature7,8 only for 
the case of spherical waves and is expressed in terms 
of vector potential. Such representation is good for 
application to calculations of radiation lifetime of 
atom levels.9 For most laser spectroscopy problems, 
the Hamiltonian of atom interaction with plane 
waves is required. The Hamiltonian for a plane 
classical wave, written in the complex form, has been 
derived in Ref. 10. However, to describe nonresonant 
interactions in cases of inapplicability of rotating-
wave approximation (RWA), the field is required to 
be presented in the real form. The corresponding 
description for gaseous media is derived in Section 1 
of this work.  

Since pulsed laser radiation of sufficiently high 
intensity is supposed to be used in the study of 
saturated absorption at forbidden transitions, it is 
necessary to know, in what way and how strong this 
absorption is influenced by nonresonance allowed 
transitions to the level 3, adjacent with the 
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considered one 1–2, i.e., atom polarizability. This 
influence can be especially noticeable in quasi-
resonance conditions: 

 ω31 – 2ω ≈ ω32 – ω ∼ Δ,  

where ω ≈ ω21 is the radiation frequency; ω21 is the 
forbidden transition frequency; ω31 and ω32 are the 
frequencies of nonresonance allowed transitions; Δ is 
some critical frequency, detuning which is to be 
determined (see the Figure 1).  
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Fig. 1. Scheme of ω−radiation interaction with the 
resonance dipole-forbidden transition 1–2 and nonresonance 
allowed transition 2–3. Parity of levels 1, 2, and 3 is 
conventionally marked by «+» and «–». 
 

Relatively small magnitude Δ can exist for both 
transitions from the ground state to the first 
metastable level 2 (e.g., for copper atom11) and for 
“hot” forbidden transitions from upper states in gas 
plasma. The value of field interaction with dipole-
allowed transitions at large radiation intensities is 
much greater than with the forbidden transition, 
therefore, Δ detuning overcoming is quite possible. As 
a consequence, the forbidden transition stops to be an 
isolated system, which should be taken into account 
when comparing the theory with experiments. The 
character and extent of polarizability influence on 
absorption at forbidden transition are determined in 
Section 2 on the base of the corresponding theory. 

1. Magnetic dipole  
and electric quadrupole interactions  

of a plane light wave  
with the forbidden transition 

Derive the Hamiltonian of field interaction with 
the forbidden transition by the commonly used 
scheme,7,8,10 taking the Lorentz force as a basis,12 

which includes the observable light-wave electric 
field strength E and magnetic induction B: 

 [ ],
e

e

c

= +F vE B   (2) 

where e and v are the charge and the speed of an 
electron in the atom; square brackets mean the vector 
product. Write vectors E and B as 
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where k is the wave vector of the wave. 
Present the radius vector r as 

 0 1 1 0, ,a= − ≈r r r r   (4) 

where r0 is the distance to the atom center; r1 presets 
the electron position in the atom; a0 is the Bohr 
radius.  

An interaction potential is determined through 
the corresponding transformation and analysis of the 
matrix element of interaction energy of electrons in 
the atom with the light wave field U = 

– r1F 
[Refs. 7, 8, 10, and 12] (omit the assumed sum over 
electrons). As the Lorentz force is basic in the 
description, required transformations reduce to 
expansion of the phase Ψ and amplitude E of the 
electric field in terms of small r1 with keeping only 
first degrees of smallness. Such expansion is not 
required for the magnetic field, since the ratio of the 
second item in Eq. (2) to the first one is small: of 
order of the fine-structure constant. Applying 
Eqs. (2)–(4), the matrix element of interaction 
potential is 
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The subscript «0» means r = r0 for the 
corresponding variables. The differential term in 
Eq. (5) corresponds to the electric quadrupole 
interaction.  

According to the definitions of electric and 
magnetic dipole moments and electric quadrupole 
moment,10,12 the operators 
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correspond to three items in integral (5). 

In (6) d̂  and Q̂  are the operators of electric 

dipole and quadrupole moments; ĵ  is the operator of 

current density; m̂  is the operator of orbital 
magnetic dipole moment, which should be added by 
the spin ˆ.s  Hence, the operator of plane wave–atom 
interaction has the form  
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If change ∇ → ik when using complex field 
presentation and resonance RWA, equation (7) 
coincides with the equation for interaction operation, 
given in Ref. 10. 

Note, that the choice rules in calculations of 
matrix elements of magnetic dipole and electric 
quadrupole moment operators differ in general case,13 
but matrix elements of both these moments are 
simultaneously nonzero for many dipole-forbidden 
transitions. Just such situation is considered below. 
 Consider now the wave equations. Consider 
two first Maxwell equations, describing waves in 
absorbing media without extraneous charges14,15: 
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Here P is the polarization and M is the medium 
magnetization. 

For definiteness, consider linearly polarized 
radiation. As it is common for problems with medium 
quantization, take z axis parallel to the direction of 
electric field amplitude E. In this case, the wave 
vector k is y-axially directed and the magnetic 
induction B is x-axially directed. Hence, the vectors 
of electric and magnetic light wave components are 
represented as 
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Applying second equations (8) and (9), obtain an 
exact expression for magnetic induction in terms of 
the electric field amplitude: 
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Similar to Eq. (9), the polarization and 
magnetization are defined as 
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Substituting Eqs. (9)–(11) in Eq. (8), neglecting the 
second derivatives of slowly varying coordinate 
amplitudes, and equaling the coefficients sinΨ and 
cosΨ to zero (which is equivalent to averaging over 
fast phase oscillations), obtain two equations: 
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The first equation in (12) is the wave equation 
for slowly varying electric field amplitude, and the 
second one is the dispersion equation, from which the 
frequency dependence of wave number or refraction 
index nd ≡ kc/ω is determined. The refraction index 
nd in absorption at allowed transitions in gases at the 
atmospheric pressure differs from unit insignificantly 
and is equal to 10–3–10–4 [Ref. 16]. It is 4–6 orders 
of magnitude less at forbidden transitions, therefore, 
nd = 1 with good accuracy. Thus, neglecting the 
dispersion when absorbing at forbidden transitions, 
k = ω/c. Corrections in Eqs. (10) and (12) due to 
coordinate derivative of amplitudes are of the same 
small magnitude, since these derivatives enter the 
equations with the coefficient fl = c/ω. 

Assuming amplitude variations small at sizes of 
the order of wavelength fl and omitting these 
derivatives, we obtain a tight correlation between the 
light wave magnetic and electric components:  

 
c s
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Due to these correlation, it is sufficient to solve only 
first equation (12) for electric field amplitude to 
determine the absorption at the forbidden transition; 
the equation for the radiation intensity I remains the 
same: I = cE2/(8π). The performed approximations 
result in a simple form of first equation (12), which 
agrees with the form of wave equation for slowly 
varying amplitude in case of absorption at dipole-
allowed transitions. The only difference is in the 
right part of Eq. (12), where the polarization Ps, 
related to sine, is changed to the sum of this 
polarization with the magnetization Ms: 
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The magnitude P = PssinΨ + PccosΨ is defined 
as the quantum mean of the effective dipole moment 

operator D̂ , which can be determined on the base of 
interaction Hamiltonian (7) with accounting for 
Eq. (13), which will be done after analysis of 
equations for statistic matrix of two-level quantum 
system. 

The quantum system in the considered case 
consists of the lower and upper levels 1 and 2, 
transition between which is forbidden for electric 
dipole interaction and is allowed for magnetic dipole 
and electric quadrupole interactions. A nonzero off-
diagonal matrix element of interaction 
Hamiltonian (7) can be written in the form 
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In accordance with the made approximations, the 
coordinate derivative of slowly varied amplitude is 
not taken into account here, and the gradient ∇ acts 
only on the phase Ψ. 

The statistical matrix equation for the two-level 
system in the model of relaxation constants for 
homogeneous broadening has the form 
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Here n is the population difference between levels 1 
and 2; n0 is the equilibrium population difference; ρ21 
is the off-diagonal element of statistical matrix, or 
forbidden transition polarization up to a constant 
multiplier.  

Pass from Eq. (16) to time independent 
equations by means of isolation of fast polarization 
oscillations of the ρ21 transition: 

 21 e , .
i

r r r ir
− Ψ ′ ′′ρ = = +   (17) 

After substituting Eq. (17) in Eq. (16) and applying 
RWA, obtain 
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Compare Eq. (18) with the similar time independent 
equations for the two-level system in case of dipole- 
allowed 1–2 transition: 
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As it follows from the comparison of Eqs. (18) and 
(19), the forms of these sets of equations are the 
same, if matrix elements of the effective dipole 

moment operator D̂  are defined as complex variables 
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r), proportional to 
the work of the field17 or Ps, and agrees with the 
expression in parenthesis in the first equation (18). 
Correspondingly, as applied to absorption at 
forbidden transitions, the quantum mean of the 
effective dipole moment operator or generalized 
macroscopic medium polarization can be written as 
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Here N is the density of radiation-interacting atoms. 
The solution of Eq. (18) is 
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As is evident from Eq. (23), the saturation parameter 
κ is similar to those in case of absorption at an 
allowed transition, except for the squared dipole 
moment, which is changed here to the squared 
module of the matrix element of effective dipole 
moment (20), |D12|

2 = m2 + q2. Substitution of 
Eqs. (22) and (23) in Eq. (14) results in the equation 
for the saturated absorption coefficient at a dipole-
forbidden transition 
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Equation (24) coincides with the Karplus–Schwinger 
formula for the coefficient of saturated absorption at 
an allowed transition18 when changing d2 → m2 + q2 
in the latter. Note, that α ∝ (m2 + q2)/Γ in case of 
linear absorption in the line center from Eq. (24), 
while α ∝ d2/Γa (Γa is the transversal constant of the 
allowed transition relaxation) for a dipole-allowed 
transition. The ratio (m2 + q2)/d 

2 ∼ 10–4 while 
Γ /Γa ≤ 10–2. Hence, the linear absorption coefficient 
at a forbidden transition is 2–3 orders of magnitude 
lower than those at an allowed transition. However, 
the ratio of the corresponding saturation parameters  
 

 κ/κa ∝ [(m2 + q2)/d 

2](Γaγa/Γγ)  

at γa ∼ Γa, γ ∼ Γ, and Γ/Γa ≤ 10–2 can be about unit. 
The same follows from the assessments made in 
Introduction on the base of Eq. (1). In other words, 
absorption at forbidden transitions is much weaker 

(15)

(23)
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than at allowed ones, but its saturation is reached at 
the same or a little larger intensity values.  

As is evident from the analysis of absorption at 
forbidden transitions, a general scheme and results of 
saturated absorption coefficient calculation remain 
the same as for absorption at dipole-allowed 
transitions, despite the difference in the radiation–
atom interaction mechanisms. This similarity could 
be revealed after expressing magnetic induction in 
terms of electric field strength (13) and introducing 
generalized medium polarization P → P + M ≡ P 
[Eqs. (14), (22)], and generalized dipole transition 
moment d → D [Eq. (20)]. Let us perform some 
transformations of the introduced variables to reduce 
statistical matrix equation (18) to a more compact 
form, completely coinciding with Eq. (19): write the 
matrix element of interaction Hamiltonian (15) as  
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This form makes evident the fact that 
quadrupole interaction results in the χ-shift of 
polarization wave phase. This is due to differential 
character of quadrupole interaction operator [Eqs. (7) 
and (15)] and results in complex matrix elements of 
effective dipole moment operator (20) in conditions 
of resonance interaction (RWA applicability). 
Maximum phase shift χ is equal to π/2 at zero 
magnetic dipole moment. 

Write matrix elements of effective dipole 
moment (20) in a similar form: 
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Again, to pass from time dependent equations for 
statistical matrix (16) to time independent ones 
instead of Eq. (17), assume 
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and instead of Eq. (18) obtain time independent 
equations, completely coinciding with Eq. (19) for 
dipole-allowed transitions,  
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with the solution 
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As a result, polarization equation (22) is also 
simplified: 
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Substitution of Eqs. (29) and (30) in absorption 
coefficient (24) with accounting for the expression 
for μ in Eq. (25) naturally gives the same result.  

2. Polarizability influence 

Let us define the character and the extent of 
polarizability influence on the coefficient of saturated 
radiation absorption at the forbidden transition (24) 
on the base of three-level atom model (see Figure). 
The equations for statistical matrix of the three-level 
Λ-system were used in Ref. 2 to describe stimulated 
Raman two-wavelength scattering, closed by 
radiation, interacting with a resonance forbidden 
transition through the magnetic dipole mechanism. 
Generalizing these equations to the case of 
simultaneous interaction of the resonance field with 
atom magnetic dipole and electric quadrupole 
moments on the base of the results from Section 1, 
obtain 
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Here ρj, j = 1, 2, 3 are the level populations; 0

jρ  are 

the equilibrium level populations in the absence of 
radiation; ρ31 and ρ32 are the polarizations of 
nonresonance allowed transitions; ρ21 is the forbidden 
transition polarization; d1 and d2 are the matrix 
elements of the operators of electric dipole moments 
at transitions 1–3 and 2–3, respectively; ωij and nij 
are the frequencies and population level differences 
for the transitions i–j; U, μ, and χ are defined by 
Eq. (25); Γ is the transversal relaxation constant of 
forbidden transition polarization. Obtain the time 
independent equations from Eq. (31) applying RWA 
and isolating fast polarization oscillations: 
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Substitution of Eq. (32) in Eq. (31) results in 
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31 32 212 , .Δ ≡ ω − ω ≅ ω − ω δ ≡ ω − ω  

A target quantity is the part Ps of generalized 
polarization P (14), determining the absorption 
coefficient and having the form  
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in the considered case of three-level atom; here 2ω-
oscillating terms are omitted. 

We have  
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from the second and third equations (33) in the 

approximation κµ ≡ 

2

2

Eμ⎛ ⎞
⎜ ⎟Δ⎝ ⎠�

<< 1, which is quite 

satisfactory (κµ ∼ 10–2–10–8) at a radiation intensity 
of 100 MW/cm2, μ ∼ 10–20 CGSE, and Δ between 1 

and 103 cm–1. Substitution of Eq. (35) in Eq. (33) 
and transition from level populations to population 
differences according to Eq. (31) result in the 
following equations: 
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  (36) 

Equations (36) coincide with Eqs. (28) for the 
isolated transition 1–2 to within notation at w → 0. 
The solution of Eq. (36) is  
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From Eq. (35) we have 
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Substitution of Eqs. (37), (38), and (34) in the 
absorption coefficient expression 
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c E
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  (39) 

following from shortened wave equations (14), gives 
the final equation for the absorption coefficient: 
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At w → 0 Equation (40) coincides with Eq. (24) and, 
hence, the influence of atom polarizability on 
saturated absorption at forbidden transitions is 
completely characterized by the only parameter w. 
Estimates of the value of saturation parameter w (36) 
at forbidden transitions at I = 100 MW/cm2, 
d2 = 1 D, and frequency detuning Δ = 10 cm–1, give 
w ≈ 0.05; the parameter w ∝ 1/Δ2 is larger than unit 
(w ≈ 5) at smaller Δ = 1 cm–1. The coefficient 1 − w 

in numerator (40) alters its sign in this case, and the 
absorption coefficient α becomes negative (for the 
transitions 1–2 and 2–3, the equilibrium population 
differences is considered as corresponding to the 
Boltzmann distribution and positive, like the 
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difference 0 0

12 23).n wn−  In other words, the radiation 

amplification instead of absorption at the dipole-
forbidden transition is probable in the conditions of 
polarizability quasi-resonance for sufficiently high 
radiation intensities of about 100 MW/cm2 and small 
frequency detuning |Δ | = |2ω – ω31| ≈ |ω – ω32| ∼ 1 cm–1. 
 The coefficient of amplification at w ∼ 2 is 
determined by small α0 (40) and is to be small as 
well. For example, α ∼ 2 · 10–6 cm–1 when N ∼ 1017

 cm–3, 
μ ∼ 10–20

 CGSE, Γ ∼ 0.6 · 109
 s–1, and λ ∼ 0.5 · 10–4 cm. 

Of more interest is the probability of radiation 
amplification without inversion of populations due to 
interference of polarizations of forbidden (r″) and 
quasi-resonance allowed ( 2R′′ ) transitions, which 
follows from Eq. (34) for the medium polarization Ps. 
In contrast to nonlinear interference of Λ-atom 
polarization in the monochromatic radiation field,19,20 
when polarizations of resonance allowed transitions 
interfere, the interference of polarizations of 
forbidden and quasi-resonance allowed transitions 
occurs in the above case. 

The interference of polarizations at allowed and 
forbidden transitions has not been considered earlier 
in the literature. The predicted radiation 
amplification should be taken into account in 
quantitative measurements of absorption coefficients 
and forbidden transition oscillator strengths. 

The influence of quasi-resonance polarizability 
on the field broadening reduces to an increase of 
saturation parameter κ (29), i.e., as is evident from 
the comparison of Eqs. (40) and (29), κ is multiplied 
by the coefficient 1 + w + w2, κ → (1 + w + w2)κ, 
which results in insignificant line widening at small 
extent of nonresonance allowed transition saturation 
at w < 1. The polarizability influences the line shift 
insignificantly. 

It follows from Eq. (40) that an additional 
vertical (interference) line shift is Δw; its sign is 
determined by the sign of frequency detuning Δ. The 
vertical shift equals to the homogeneous half-width of 
line Γ when the intensity Is is Δ/Γ-time lower than 
the intensity of nonresonance transition saturation, 
determined by the relation w = 1. For the above 
values, Δ = 1 cm–1, and Γ = 100 MHz = 0.0033 cm–1, 

2

s 22/( )I c d= ΓΔ π� = 67 kW/cm2. 

Note, that the intensity Is, determined from the 
condition Δw/Γ = 1, is equal to the intensity of 
saturation of stimulated Raman two-wavelength 

scattering2 when changing d1d2 to 2

2d  in the latter. If 

I = 100 MW/cm2, then at Δ = 1 cm–1 the vertical  
 

shift Δw = 5 cm–1 = 150 GHz, which is three order 
of magnitude larger than the homogeneous half-width 
of the line Γ = 100 MHz. At such intensity, the value 
of vertical shift is equal to Γ, i.e., vertical shift is 
quite noticeable, for quite significant frequency 
detuning: Δ ∼ 103–104 cm–1. 

Hence, the main influence of atom polarizability 
on absorption line profile at forbidden transitions in 
the quasi-resonance conditions |ω – ω32| ∼ 10–1000 Γ 
lies in formation of large vertical line shift. 
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