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An effective method for analytical calculation of polarization characteristics of radiation 
multi-scattered by turbid medium is considered. The efficiency of the method is in the assumption 
that the complete solution of vector radiative transfer equation (VRTE) is the superposition of the 
anisotropic and smooth parts, computed separately. The vector small-angle modification of the 
spherical harmonics method (SGM) is used to evaluate the anisotropic part, containing all 
singularities of the solution; and the matrix discrete ordinates method is used to obtain the smooth 
one, adding SGM to complete VRTE solution. The process of polarized radiation transfer is 
considered in a horizontally infinite layer of an arbitrary optical depth, irradiated by a plane mono-
directed radiation source. Calculation examples are given for natural nonpolarized radiation. 
However, advantages of the suggested method carry over an arbitrary (including three-dimensional) 
geometry of scattering medium, arbitrary form of source, and radiation polarization state. 

 

Introduction 

It is known that the radiation polarization state, 
described by the four-component Stocks vector-
parameter (SVP), natural from the photometric point 
of view, contains all the information about a sensing 
object, accessible to optical investigation methods.1,2 
Nevertheless, today the amount of researches in 
scalar approximation, i.e., with accounting for only 
radiation brightness (first SVP component) 
essentially exceed polarimetric ones. This is 
concerned with a comparatively small number of 
working polarimeters, which can be explained, in its 
turn, by two main reasons. First, this is the design 
problem in constructing the polarimeters necessary to 
detect quite weak SVP polarization components. 
However, the technology state-of-the-art allows the 
solution of the design problems. Hence, the second 
reason is principal: a lack of reliable mathematical 
model, accounting for polarization effects and serving 
as a reliable base for interpreting the polarization 
measurements (see, e.g., SPIE, V. 5888, “Polarization 
Science and Remote Sensing II,” 2005, where a wide 
spectrum of experimental works is given against a 
small number of theoretical ones).  

Like in the scalar case, the vector (polarization) 
radiation transfer model should be quite effective, 
i.e., possess a high rate of the convergence of the 
boundary problem of vector radiation transfer 
equation (BP VRTE) solving to the exact one. The 
model also should allow calculations for strongly 
anisotropic phase functions, characteristic of many 
natural formations (clouds, ocean, cosmic dust), for 
different optical depths τ (tenth fractions for clear 

atmosphere, and units and tens for clouds, shallow 
waters, and semi-infinite medium – the ocean), as 
well as for an arbitrary irradiation zenith angle θ0. 
Accounting for scattering multiplicity is obligatory. 
An analytical form of the solution allows the 
calculation optimization and some simplification of 
solution of the inverse problems. An arbitrary state 
of the source polarization widens model applicability 
and makes it suitable for operation both with passive 
polarimeters and lidars.  

In this work, we suggest a model of polarized 
radiation transfer in a turbid (scattering and 
absorbing) medium layer, irradiated by a plane mono-
directed (PM) radiation source in the arbitrary 

direction 0
ˆ .l  The above-mentioned requirements were 

taken as model criteria.  

Definition of anisotropic part 

Let us take the following designation: «→» is 
the four-element column vector; «↔» is the sixteen-
element Mueller matrix; Λ is the photon survival 
probability in one scattering event (single scattering 
albedo); θ and ϕ are the zenith and horizontal angles, 
respectively; 

 μ = cosθ; 2 2
1 1

ˆ [ cos , sin , ]= −μ ϕ −μ ϕ μl  

is the unit spatial direction. Designate SVP and its 

components as L
�

 = [I Q U V]T, where “T” is the 
transposition operation; I is the total beam 
brightness; Q and U are the energy components 
determining the linear polarization degree and 
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reference plane position; V determines the degree of 
ellipticity. 

In this work, we deal with radiation scattering, 
however, the suggested method is also effective for 
particle physics, where consideration of spin causes 
changeover to vector problems,2 and the scattering 
anisotropy is usually essentially higher than the 
atmospheric one.  

One of the main questions in solution of 
radiation transfer problems, both scalar and vector, is 
accounting for singularities of the BP for transfer 
equation with corresponding conditions. These 
singularities follow from the ray approximation in 
description of a medium-scattered radiation field. A 
mathematical singularity for a PM-source is caused 
by direct non-scattered radiation, expressed by the 
Dirac δ function. In analytic form, the singularity 
requires the infinitive number of terms of basic 
functions expansion, hence, it could not be calculated 
analytically. Chandrasekhar suggested to consider the 
scattered radiation field in a two-component form, 
i.e., the direct non-scattered δ-singularity, forming 
the source functions in the transfer equation, and the 
scattered light.3 However, the scattered light for real 
strongly anisotropic turbid media is described by a 
“sharp” function of angular light distribution, which 
requires the significant number of expansion terms 
for its definition. This results in an increase of 
calculation time and, in a number of cases, in 
deterioration in solution conditionality.  

In this work we apply the technique widely used 
in the scalar approximation4–7 and present the target 
vector field as a superposition of the most anisotropic 
part, containing the direct radiation, and a smooth 
part (designated by the subscript R – “regular”) 
which is regular in contrast to the singularity-
containing anisotropic part. The scattering anisotropy 
is concentrated within “small” scattering angles 
relative to radiation incidence onto an elementary 
scattering volume (here the term “small angles” is 
historical and does not reflect real range of the 
method applicability). Taking the above-mentioned 
into account, write  

 R SAL L L
ˆ ˆ ˆ( , ) ( , ) ( , ).τ = τ + τl l l

� � �

 (1) 

Basis functions for polarized radiation transfer 
problems are generalized spherical functions (GSF); 
their properties, the addition theorem, and recurrence 
relations, for which 

 2 0 0 2Y ( ) dk k k k k
m m m m mP P P P

+ + − −
⎡ ⎤μ = μ   μ    μ    μ⎣ ⎦

�

, , , ,iag ( ); ( ); ( ); ( )  

are known.8  

Write the standard GSP-presentation of the 
sought SVP spatial distribution and scattering matrix 
x

�

 (for the Circular Polarization (CP) basis9 used in 
the vector transfer theory for scattering integral 
expansion): 
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k k
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r s
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k
im
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+
τ = μ τ ϕ

π

⎡ ⎤′ ′= + τ⎢ ⎥⎣ ⎦

∑∑

∑

l

ll ll

�
� �

�

, ,
,

ˆ( , ) ( ) ( )exp( );

ˆ̂ ˆˆ( ) ( ) ( )P ( ).

 (2) 

The anisotropic part is calculated in the vector 
small-angle modification of the spherical harmonics 
method.10 VSHM (similar to SHM,4–7 which is scalar 
approximation of VSHM) is based on a continuous-

function approximation of the spatial spectrum f
m
k

�

, 

discrete relative to the zenith index k (order of the 

GSP of , ( )k
m nP µ ), of the sought vector brightness 

field. Smoothness of the spatial spectrum due to 
solution singularity and scattering anisotropy allows 
one to bound by two terms of the Taylor expansion 

of fmk
�

 by the harmonic number k: 

 ( )
f

f 1 f
( , )

( , ) , .
m

m m
k

k k
k

∂ τ
τ ± ≈ τ ±

∂

�

� �

 (3)  

This assumption along with the scattering 
integral expansion on the base of GSF addition 
theorem in complex circular basis, recurrence 
relations for GSP, and equation (2) allow one to 
obtain a simple analytic expression to calculate the 
anisotropic part in the form of matrix exponent 
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(4)

 

where the coefficients of scattering matrix expansion 
in the real energy SP basis (Stokes Polarization) is 

SC CST Tk kxχ =

� �

��

 and matrix polynomials have the form  
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(5)

 

Here SCT
�

 is the known matrix of transition from 

complex CP to energy (Stokes) SP basis9 and 
polynomials 
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are similar to Ref. 11. 
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Vectors f 0( )m
k

�

 in Eq. (4) are known from the 

boundary conditions.10 VSHM (4) allows the 
calculation within the virtually whole forward 
hemisphere (the set of directions in the half-space, 
containing directions of radiation incidence on a 
layer). The reliability domain naturally depends on 
medium parameters. The higher is the brightness 
body sharpness (i.e., the stronger is the scattering 
anisotropy and the smaller is the layer optical 
depth), the wider is the domain, where VSHM gives 
a sufficiently good result. Note, that VSHM (4) 
includes not only the anisotropic part of scattered 
radiation, but also the singularity of BP VRTE. It is 
possible to expand the matrix exponent in Eq. (4) 
analytically.12,13 However, modern math packages, 
e.g., The MathWorks Matlab®, allows the solution to 
be obtained directly from Eq. (4). Computation of 
VSHM takes about 1 s.  

A break of Taylor series (4) results in neglecting 
the dispersion of photon scattering paths and, hence, 
in errors in brightness filed computations in the back 
hemisphere. To eliminate this disadvantage and 
obtain a complete solution of BP VRTE, let us find a 
non-small-angle (regular) addition to VSHM.  

Regular solution part 

As it was mentioned above, in this work BP is 
formulated only for a smooth small-angular addition, 
but not for scattered radiation as in the 
Chandrasekhar method. In this case, VSHM does not 
change the general form of BP VRTE: 

R
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∫
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ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ( ( ) ( ) ( , ) ( , );

ˆ ˆ ˆ( , ) ; ( , ) ( , ).

 

  (6) 

The source function is expressed on the base of 

VSHM ˆ( , )Δ τ l
�

: 
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Expansion of the scattering integral is one of the 
main problems both in scalar and vector radiation 
transfer theory, along with accounting for solution 
singularities. For this purpose, the complex circular 

CP basis9 is used, diagonalizing the rotator matrix R
�

 
and allowing the scattering integral expansion. 
However, the use of a large-scale stabilizing 
solution14 is impossible in case of complex numbers. 
Hence, after expansion of the scattering integral in 
the complex domain, the obtained vector coefficient 

system f ( )m
k τ

�

 is transformed back to the real SP 

presentation (both for VSHM and for the smooth 
part (6) and solving source function (7) in BP 
VRTE). The vector discrete ordinates method 
(VDOM) with the boundary conditions in the Mark 
form (Ñ. Mark) is chosen for solution (6) in view of 
its high computational efficiency in contrast to SHM. 
The BP VRTE has been solved in Ref. 11 by the 
Chandrasekhar method; this allows some designations 
from Ref. 11 to be used in this work. Finally, note 
that at tilted irradiation the references in Eqs. (4) 
and (6) differ. To align reference planes, we use their 
rotator-described rotation. 

Consider the scattering integral in Eq. (6). To 
expand it, transform all the integrated matrices into 

the CP basis (transition matrix CST
�

), diagonalizing 

the rotator. Let us use Eq. (2), the addition formula 
for GSF, and reverse matrix transition into the 
Stokes photometric basis (transition matrix 

1

CS SCT =T
−

� �

): 

S SC

CS SC CS SC CS SC CS

4

04

I T
4

T R( )T T T T R( )T T L d

2 1
4

P ( ) P ( )L d

k

k m k

k k
m k m

x

k im

π

∞

= =−
π

Λ
= ×

π

′ ′ ′ ′× χ χ τ =

Λ
′= + ϕ−ϕ ×

π

′ ′ ′× μ χ μ τ

∫

∑ ∑∫

ll l l

l l

� �

� �� � � � � � � �

�

� � �

�

ˆ̂ ˆ ˆ( ) ( , )

( ) exp( ( ))

ˆ ˆ( , ) ,

 

(8)

 

where complex polynomials are defined as a sum of 

the real RP ( )µ
�

 and imaginary IP ( )µ
�

 parts (each 

depends on k and m, but these indices are emitted 
here) as follows:  

 R IP P P( ) ( ) ( ).k
m iµ = µ + µ
� � �

 

Grouping, as in scalar case, azimuth harmonics 
of the symmetric orders m and – m in Eq. (8) and 
carrying out the above matrix transformation, we 
obtain 
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  (9) 
where  
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Similar to Ref. 11, it is convenient to introduce 
the following functions in Eq. (9): above-defined 

polynomials P ( )m
k µ

�

 in Eq. (5), selection matrices 

 1 2D 110 0 D 0 0 1 1diag{ , , , }; diag{ , , , }=  = − −

� �

,  

and phase matrices  
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1

2

φ ϕ = ϕ ϕ ϕ ϕ  

φ ϕ = − ϕ − ϕ ϕ ϕ

�

�

( ) diag{cos ,cos ,sin ,sin };

( ) diag{ sin , sin ,cos ,cos },
 

which reduce Eq. (9) to the form  
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where  
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�

  

According to the form of integral (10), the smooth 
part is conventionally presented by two azimuth-
depending items 
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 (11) 

Substituting Eq. (11) in Eq. (10), removing 
parentheses, and using orthogonality of the function 

1 2, ( ),φ ϕ
�

 we obtain the equation for non-small-angle 

smooth addition (the scattering integral has the same 
expression in source function (7)) in the form (“~” 
means the regular part): 
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where each item is defined from BP, similar to 
Eq. (6) (i = 1, 2): 
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provided the source function ˆ( , )Δ τ l
�

 is defined. Note, 

that the function 1 2, ( )φ ϕ
�

 was used in Ref. 11 owing 

to the block-diagonal form of the scattering matrix. 
The suggested method allows an arbitrary form of the 
scattering matrix in case of known matrix coefficients 
in its GSF-expansion. 

To calculate the source function after aligning 
reference planes, the above-described techniques are 
used, i.e., transformation chain SP → CP → SP, 
GSF addition formula for scattering integral 

expansion in Eq. (7), and recurrent relations for the 
GSF system for vector coefficients. 

On the base of the addition theorem, Eq. (4), 
and transition into the energy basis, the source 
function has the form  
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The transformation equation for the differential 
term is easily obtained from Ref. (8); then the source 
function can be presented as 
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where the coefficients are defined by the following 
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The matrices in Eq. (14) have the form8: 
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The reference functions differ in Eqs. (14) and 
(13) (the source function is defined with respect to 

the plane 0
ˆ ˆ
×l l  and VRTE – with respect to ˆ ˆ×l z ). It 

is necessary to use the rotator, presenting Eq. (14) as 
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or, writing additionally required transformation 
matrices of the basis: 
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Based on the addition theorem and reducing 
matrix to the real form, we have  
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Finally, the source function has the following 
form: 

 
0

0

0 0 0

2 1
P

4

P L

ˆ ˆ( , , ) ( ) ( )

( ) exp[ ( )],

k

m
k k

k m k

m
k

k

im

∞

= =−

+
Δ τ = μ Φ τ ×

π

× μ ϕ−ϕ

∑∑l l
�� �

� �

 

(15)

 

where  

 [ ]
T

0 0 0L = 1 2 2sin cosp p qϕ − ϕ

�

  

is the SVP of the incident radiation with the linear 
polarization degree p and ellipticity q; φ0 defines the 
azimuth position of the reference plane. In the SP 
basis, we have  

1 1 1

1 1

1
1 Z

2 1

2 1
4 1 Z 1 Z

1

( ) ( ) ( )a

( )
( ) ( )b ( ) ( )a

( )

k k k k k

k k k k k k

k

k

k k

+ + +

− −

⎧ ⎡
Φ τ = Α −Λχ τ +⎨ ⎢+ ⎣⎩

⎤+
+ −Λχ τ + Α −Λχ τ −⎥+ ⎦

� ���

��

�� �� ��

�� �

 

( )0 01 Z Z 1( ) ( ) , exp ( ) ,k k k k

⎫⎪
− − Λχ τ          = − − Λχ τ μ⎬

⎪⎭

� �� �

� �

 

where  
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�
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�
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The matrix coefficients, being substituted in 
Eq. (15) along with Eqs. (13), (4), and (1) (indices 
“VSHM” and “SA” are identical in this case), give 
the complete solution of BP VRTE for an arbitrary 
angle and polarization state. In this work, the 
problem has been solved by the matrix method of 
discrete ordinates with the boundary condition in the 
Mark form. 

Some results 

Below we give some computation examples of 
the complete BP VRTE solution by the above-
described method. To simulate aerosol scattering, we 
used the Mie scattering by the Haze model L.15 One 
of the effective ways of testing the solution is a 
comparison with single scattering approximation 
(Figs. 1 and 2) for weakly scattering media, 
described by simple analytical formulas. Figure 1 
shows the comparison of results of polarization 
degree, computed by two methods for radiation, 

transmitted through the layer and diffusively 
reflected by it. Some downward deviation of the 
described VSHM + VDOM method from the single 
scattering approximation is evident.  

 

 
à 

 

b 

Fig. 1. Angular dependence of the polarization degree p(θ): 
transmitted (a) and reflected (b) radiation. 

  

 This can be explained by the fact, that more 
than one scattering event is possible even in a thin 
layer at tilted paths, which results in radiation 
depolarization. The known event was also observed of 
complete depolarization of radiation, scattered 
forward and backscattered along the layer normal. 
The layer parameters are: τ = 0.1 and Λ = 0.9. 

Angular and depth dependences of the radiation 
polarization degree, calculated by the suggested 
method, are shown in Fig. 2. Computations confirm 
the known fact of radiation depolarization with an 
increase of scattering layer depth. Side “lobes” of the 
Mie scattering matrix are smoothed as a result of 
multiscattering, and monotone decrease of 
polarization degree depending on the angle without 
peaks (Fig. 2b) is observed for large depths 
(τ = 5, 10). All computations show the known 
presence of neutral polarization points on the 
firmament. 



32   Atmos. Oceanic Opt.  /January  2008/  Vol. 21,  No. 1 V.P. Budak and S.V. Korkin 
 

 

 

a 

 

b 

Fig. 2. Angular and thickness dependences of polarization 
degree p(θ): transmitted (a) and reflected (b) radiation. 

Conclusion 

In conclusion, emphasize an important moment: 
subtraction of only δ-singularity with further 
determination of scattered radiation seems to be 
ineffective in cases of strongly anisotropic scattering 
and math singularities in BP VRTE, described by the 
ray approximation. An effective way of solving the 
boundary problem in the transfer theory is its 
determination in the form of superposition of the 
whole anisotropic part and a smooth addition. In this 
case, the efficiency of the suggested method is 
quickly enhanced with an increase in scattering 
anisotropy, scattering medium stratification, as well 
as  at  transition  to the  three-dimensional geometry. 
 The solution in VSHM form, obtained on the 
base of VRTE simplification, is often sufficient for 
problems of sensing the descending radiation 
(radiation scattered to the forward hemisphere). 
Comparative simplicity of anisotropic part 
calculation, imposing the most exact requirements on  
 

the number of used harmonics, in VSHM along with 
addition smoothness determine the efficiency of the 
described method. 

Note one more peculiarity of the polarized 
radiation transfer problems. In this work, the 
scattering integral is expanded in CP basis with 
further return into the real SP-presentation to apply 
matrix transformation [Ref. 14] and improve the 
solution stability. However, there is no need in the 
use of transformation chain SP–CP–SP, resulting in 
the transformation of form of matrix GSF (5). The 

use of P ( )m
k µ

�

 as the basis functions instead of Y ( )m
k µ

�

 

allows avoiding the going to the complex CP space, 
if the addition theorem, symmetry relations, and 

recurrent relations for P ( )m
k µ

�

 were proved before. 

This problem along with accounting for the complete 
scattering matrix instead of block-diagonal aerosol 
matrix and the going to three-dimensional geometry 
are objects of the current study for the authors. 
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