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Measurements of local astroclimate parameters in specialized rooms of the Large Solar 
Vacuum Telescope (Baikal Astrophysical Observatory ISTP SB RAS) are presented. It is shown that 
temperature gradients in the telescope rooms cause a Benard cell and the incipience of the turbulence 
in the pavilion of astronomical spectrograph. It is shown that the measurements confirm main 
stochastic scenarios (Landau–Hopf, Ruelle–Takens, Feigenbaum, and Pomeau–Menneville).  The 
bifurcation Feigenbaum diagram is confirmed experimentally. The main vortex in the Benar cell is 
decomposed into smaller ones as a result of ten period-doubling bifurcations. The incipient turbulence 
is stated to be almost determinate. The fractal character of the turbulence spectrum is found. The 
actual atmospheric turbulence is shown to be a mixture of determined vortices of different scales, 
observed in the incipient turbulence. It has been found that the incipient turbulence introduces large 
errors into spectral measurements. The horizontal random shifts of spectral lines, appearing due to 
the pavilion effects, can reach 1 arc-second. The incipient turbulence approximates to the regular 
refraction by its optical properties due to low frequencies of line shifts. 

 

Introduction 

As is known,1–4 the atmosphere inside 
astronomic telescopes noticeably affects the quality of 
images.  

This paper continues the work5 devoted to 
measurements and analysis of the of local 
astroclimate parameters of the most important 
working areas of specialized rooms of the Large Solar 
Vacuum Telescope (LSVT, Baikal Astrophysical 
Observatory ISTP SB RAS, Listvyanka village, 
Irkutsk Region). First of all, they are astronomic 
spectrograph (set up as the horizontal Ebert scheme 
and consisting of the indoor pavilion and the 
operator working place) and areas near the coordinate 
and adaptive tables. 

In the first part of that work,5 the measurement 
schemes were described and measurement results were 
presented. It has been shown, that the Benard 
convection cell and the turbulence, incipient inside 
the astronomic spectrograph pavilion, are caused by 
temperature gradients inside the telescope rooms. 

In the second part of the work, the properties of 
incipient turbulence are studied in detail; models of 
turbulent temperature spectrum are developed, the 
spectrum parameters (outer and inner scales, 
temperature fluctuation intensity) are studied. It is 
ascertain that measurement data confirm main 
stochastic scenarios (Landau–Hopf, Ruelle–Takens, 
Feigenbaum, and Pomeau–Menneville).  In addition, 
the bifurcation Feigenbaum diagram is confirmed 
experimentally, and it is revealed that the main 
vortex in the Benar cell is decomposed into smaller 

ones as a result of ten period-doubling bifurcations. 
The incipient turbulence is stated to be almost 
determinate. The fractal character (local self-
similarity) of the turbulence spectrum is found 
experimentally. The actual atmospheric turbulence is 
shown to be a mixture of determined vortices of 
different scales, observed in the incipient turbulence.  
 The obtained results allow estimating the 
influence of atmosphere inside the telescope on the 
quality of astronomical observations. It is found that 
the incipient turbulence introduces large errors into 
spectral measurements, even on short paths. 
Horizontal random line shifts, appearing due to the 
pavilion effects, can reach 1 arc-second. In this case, 
lines shift slowly, with a frequency of about 0.01 Hz. 
Due to low shift of the frequencies, the incipient 
turbulence approximates to the regular refraction by 
its optical properties. 

1. Models of temperature fluctuation 
spectra in the incipient turbulence 

Models of temperature fluctuation spectra, first 
of all, of the spatial 3D spectrum Φ

Ò
(i), are required 

in problems of optical radiation propagation in 
undeveloped turbulence, including the forecasting of 
the influence of the telescope specialized rooms on 
the  image quality. 

As is known, time frequency spectra of 
temperature fluctuations WT(f) in open air are 
adequately described by  the Karman model. The 
Kolmogorov developed turbulence spectra have a 
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long inertial interval, where WT ∼ f 

–5/3 and the 
energy is transported from large-scale vortices to 
smaller ones. 

Smoothed time frequency spectra of temperature 
fluctuations WT are shown in Fig. 1 for a closed 
room and open air. As is seen, the closed-room 
spectra roll-off much more rapidly than open air ones 
within the inertial interval; besides, within the 
interval, there are only short individual frequency 
regions (in echelon), inside which the turbulence can 
be considered as Kolmogorov one (WT ∼ f 

–5/3). These 
regions are observed between jumps of the spectral 
function at the frequencies, corresponding to local 
maxima of fluctuation correlation function (or 
minima of the structure function). 

 

10–6 

10–5 

10–4 

10–3 

10–2 

10–1 

100 

101 

5 

2 

1 

4 

2 

1

WT, deg2/Hz 

1 – open air  
2 – closed room 
3 – ∼ f 

–5/3 

4 – WT(f), ν = 5/6 
5 – WT(f), ν = 1/3 

 0.01 0.1 1 10 100 

f, Hz 

3 

 
Fig. 1. Smoothed time frequency spectra of temperature 
fluctuations WT in a closed room (point 5 in the pavilion) 
and in open air. 

 

In case of smoothed echelons, experimental 
spectra of undeveloped turbulence have a number of 
characteristic regions of rapid power decreasing. 
Thus, if WT ∼ const at a long energy interval, then 
first WT ∼ f 

–8/3 with frequency rise (within the 
inertial interval) and then WT ∼ f 

–12/3. Hence, energy 
transport from large to small vortices is insignificant 
in the incipient turbulence, i.e., the vortices are 
weakly diffused. Spectra roll-off slows down 
(WT ∼ f 

–2/3) with further frequency rise, in the 
viscous interval, where the spectral density is close to 
the noise level. Similar behavior of spectra is 
observed at other points of the pavilion. 

To construct a crude abstract model Φ
Ò
(i) of 

incipient turbulence spectra, the Karman model with 
roll-off corresponding to Fig. 1 within the inertial 
interval can be used. As is known,1 the Karman one-
dimensional spatial spectrum V(i) generally has a 
form 

 V(i) = V(0)(1 + i2/i0

2
)–(ν+1/2)exp(– i2/im

2
); 

 i0 = 2π/L0, im = 5.92/l0 ;  (1) 

 V(0) = B(0)i0

–1
Γ(ν + 1/2) Γ–1(ν)π–1/2, 

where L0 and l0 are the outer and inner turbulence 
scales, respectively; V(0) is the spectrum value at 
zero; B(0) is the dispersion of a random process; the 
parameter ν defines the roll-off rate in the inertial 
interval: ν = 1/3 for the developed turbulence, then 
V(i) ∼ i–5/3 in the inertial interval. According to 
Fig. 1, ν = 5/6 in the incipient turbulence, hence, 
V(i) ∼ i–8/3 in the most part of inertial interval. 
Further a more rapid spectrum roll-off (V(i) ∼ i

–12/3) 
is described by the exponential factor in Eq. (1).  

The maximum error of spectrum approximation 
by Eq. (1) falls into the region of very large 
frequencies (viscous interval). Therefore, problems of 
wave propagation, where this interval is of great 
importance, require a more detailed model as 
compared to Eq. (1). The viscous interval does not 
significantly contribute into problems of optical beam 
shift, image jitter, etc., i.e., where wave phase 
fluctuations play a key part; therefore, equation (1) 
can be used here.  

Prescribe ν = 5/6 in Eq. (1) and use the 
equation W(f) = (4π/υ)V(2πf/υ) [Ref. 1] (where υ 
is the modulus of wind velocity), connecting the 
spatial spectrum V(i) with the time spectrum over 
positive frequencies W(f). Then, the outer scale of 
the turbulence L0 is retrieved from Eq. (1) (similarly 
to Ref. 3) at all measurement points in the pavilion 
from the experimental data on W(0) and B(0). 
However, the obtained values of L0 do not give a 
good agreement between Eq. (1) and the experiment. 
The agreement can be attained when using frequency 
axis stretching in Eq. (1) i → ξi with certain fitted 

stretch factor ξ; then L0 → ξL0. Arising CT

2
 variations 

in this case are insignificant and fall within the 
measurement error limits. 

The stretch factors ξ and resulted inner and 
outer turbulence scales are given in Table 1 for 
spectra (1) at ν = 5/6 and 1/3.  

 

Table 1. Parameters of incipient turbulence spectra 

ν = 5/6 ν = 1/3 Observation 
point ξ L0, cm l0, cm ξ L0, cm l0, cm

1 1.2 33.2 1.2 3.0 83.0 1.8
2 1.4 47.4 2.3 3.0 101.6 3.5
3 1.1 19.8 1.2 3.0 53.9 1.2
4 1.2 27.0 1.8 3.0 67.5 2.8
5 1.4 62.6 2.3 2.8 125.1 4.1
6 1.2 18.5 1.6 3.0 46.4 2.1
7 1.1 46.4 2.3 3.0 126.5 2.9
8 1.5 18.0 1.84 3.0 36.0 2.8
9 1.3 60.3 2.3 3.0 139.2 3.9
10 1.4 18.1 1.8 3.0 38.9 1.8
11 1.2 30.4 2.3 3.0 76.1 2.9
12 1.4 25.4 2.3 3.0 54.3 3.2

 
As is seen from Table 1, the inner scale of the 

incipient turbulence l0 (mean l0 = 1.9 cm at ν = 5/6 
and 2.7 cm at ν = 1/3) is an order of magnitude 
larger than the outer one in free air (0.7–4 mm, 
Refs. 1–3). 
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Model (1), which can be considered as a 
fluctuation spectrum in the incipient turbulence, 
better agrees with the experiment at ν = 5/6 than at 
ν = 1/3 (the developed turbulence). This follows 
from the comparison of curves 4 and 5 in Fig. 1. The 
area under the curves differs from the experimental 
one by 15% (ν = 5/6) and 28% (ν = 1/3). However, 
model (1) with ν = 1/3 is commonly used and 
preferable, because it allows the extension of the 
wave propagation problem solution for the developed 
turbulence  to  the  case  of  the incipient turbulence. 
 Using the equation  

 Φ
Ò
(i) = –[1/(2πi)]dV

Ò
(i)/di  

and omitting exponentially small corrections, obtain 
the model of 3D temperature spectrum in the 
incipient turbulence: 

 Φ
Ò 

(i) = A0CT

2
(i2

 + i0
2)–(ν+3/2)exp(– i

2/im
2),  

 A0 = 0.033, i0 = 2π/L0, im = 5.92 /l0. 

The L0 and l0 parameters of this spectrum for 
ν = 5/6 and ν = 1/3 are given in Table 1. It is 
evident, that Φ

Ò
(i) ∼ i–14/3 at ν = 5/6 and 

Φ
Ò
(i) ∼ i–11/3 at ν = 1/3  within the inertial interval. 

As for V(i), the spectrum Φ
Ò 

(i) is more precise at 

ν = 5/6. 
The size distribution of outer turbulence scale L0 

in vertical plane inside the pavilion is shown in 
Fig. 2. Periodic behavior of the inner scale l0 is 
similar to those shown in Fig. 2 for the outer one 
(see Table 1). In this case, the lower outer scale 
corresponds to the lower inner one.  
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Fig. 2. Distribution of outer turbulence scale L0 in the 
vertical plane passing through the pavilion center and west-
east line (according to data from Table 1). Circles of larger 
diameter corresponds to larger L0 values. Figures designate 
the numbers and positions of observation points.  

 

It is known, that outer and inner scales 
determine maximum and minimum sizes of 
inhomogeneities. Hence, a spatial periodicity of sizes 
of temperature field inhomogeneities (of quincunx 
structure type) inside the pavilion follows from 
Fig. 2 and Table 1.  

Regions with decreased outer scales can be 
called turbulence locks (or focuses), where an 
enhanced break-up of the large-scale averaged flow to 
smaller spatial components is observed. The intensity 
of random temperature variations, characterized by 

the periodic parameter CT

2 (Ref. 5, Table 4, points 2, 
4, 5, and 6), on average, decreases in the focuses, 
which is caused by smaller temperature differences 
(of passive admixtures1,2) in more diffused and 
smaller vortices there. 

2. Stochastic scenarios  
of convective flows 

Compare the measurements in the pavilion with 
the well-known data on turbulence incipience from 
laminar flows (stochastic scenarios, most known of 
which are Landau–Hopf, Ruelle–Takens, 
Feigenbaum, and Pomeau–Menneville).2 It will be 
shown below, that all these scenarios are confirmed 
in the incipient turbulence. 

The Pomeau–Menneville scenario  

As is known,2,6 as the distance increases 
(Reynolds number) in laminar flows in pipes,  small 
turbulent regions with non-laminar flow first arise. 
These regions are usually called turbulent locks (or 
focuses). The locks become longer with increasing the 
distance and finally merge in a continuous turbulent 
flow. Turbulent locks are observed in experiments 
with other schemes as well.6 The locks cause 
alternation of laminar and turbulent modes. Such 
turbulence incipience via alternation is called the 
Pomeau–Menneville scenario.2,7 

It follows from our measurements, that 
turbulent locks and alternation (and, as follows from 
Ref. 5, Fig. 8, the corresponding bifurcations of 
stability change) exist in periodic flows in the Benar 
cell as well. The parts of locks are played by regions 
with decreased spatial components (outer L0 and 
inner l0 scales). The locks turn out to be trapped in 
the structure of the Bernar cell and alternate with 
regions of large scales L0 and l0. Hence, our data 
confirm the Pomeau–Menneville scenario. 

The Landau–Hopf scenario 

The incipient turbulence in the Bernar cell is a 
convenient model allowing one to trace the 
degradation of energy-carrying vortices into smaller 
ones. In fact, the toroidal vortex of averaged 
movements can be considered as the only energy-
carrying vortex in the Bernar cell. Its sizes are 
determined by sizes of the room, where it originates. 
It is difficult to register the sizes of the main energy-
carrying vortex in open air, because they depend on 
climate-forming factors. The outer turbulence scale is 
usually considered as this vortex, which itself is the 
product of the break-up. 
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The correlation factor bT and the sample non-
smoothed temperature frequency spectrum WT, 
calculated from the pavilion measurements data (at 
point 5), are shown in Fig. 3. 
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Fig. 3. Correlation factor bT and non-smoothed frequency 
spectrum WT  (top right) in the pavilion (τ is the time). 
Figures designate the numbers of bT and WT maxima, 
corresponding to each other. 

 

The correlation factor bT has been calculated 
from different sample estimates,8–10 which, however, 
give no agreement between the results and reveal the 
local maxima of bT. The correlation function can be 
calculated with an arbitrary small error at a large 
sample length N (a variance of bT error is 
proportional to 1/N). In our case, N = 19139; hence, 
the 95% confidence bound of definition of the  bT 
function, shown in Fig. 3, makes ± 0.014; this is 
much less than bT maxima. 

The sample spectrum WT was calculated without 
smoothing with a rectangular spectral window. As is 
known,8,9 such a window acts like a slit of about 2/T 
in width (T = 120 s). This resolution is sufficient to 
reveal the WT spectrum maxima, uniquely 
corresponding to bT maxima. Arguments of bT and 
WT maxima are related as τkfk = 1, k = 1, 2,… (τ1 and 
f1 usually determine characteristic scales of bT and 
WT decrease). The diameter  of the main energy-
carrying vortex 2R1 is easily retrievable from the 
relation 2πR1 = υτ1 = υ/f1; it is equal to 294.4 cm 
(υ = 9 cm/s, f1 = 0.00973 Hz) at point 5 in pavilion. 
Virtually the same result is obtained from data of 
Ref. 5, Fig. 7, if the trajectories of averaged 
movements are considered as circles. 

Comparison of WT spectra in Figs. 1 and 3, 
shows disappearance of real spectrum maxima at a 
standard spectrum smoothing by a wide window 
(dispersion of the smoothed spectrum in Fig. 1 is 
equal to 1% of the sample spectrum dispersion). 
Therefore, to calculate frequencies of spectrum 
maxima (harmonics), data of Fig. 3 are required. 
However, the rectangular spectrum window has large 

side lobes, causing oscillations especially at high 
frequencies. It is possible to get rid of these lobes 
using any of extended nonrectangular windows 
(difference between them is negligible), for example, 
the Welch window.10 This window about two-fold 
decreases the dispersion as compared to a rectangular 
one and similarly widens the frequency band width. 
The widening is acceptable, because the band width 
turns out to be less than the mean width of spectrum 
maxima. This is evident from data for WT in Fig. 3.  
 To improve the sample estimate, a digital 
threshold filter can be used additionally to eliminate 
weak (lower than the averaged in Fig. 1) harmonics 
in spectrum. These harmonics can be interpreted 
either as high frequency side lobes, incompletely 
damped by the Welch window, or a weakly 
pronounced transient process of energy-carrying 
vortex decomposition to smaller ones. It is shown 
below (see Fig. 6), that the structure of weak 
harmonics is fractal, it does not coincide with those 
of side lobes. Therefore, the side lobes are completely 
damped. 

Analysis of the spectrum in Fig. 3 with the use 
of different spectrum windows shows that the 
spectrum maxima at frequencies lower than 0.17 Hz 
hold for almost all windows; therefore, the use of the 
threshold filter is justified at higher frequencies. 
Thus, the threshold filter extracts the main spectrum 
maxima (or first-order harmonics). 

Based on the above analysis, harmonic 
frequencies (arguments of maxima) in the fluctuation 
spectrum WT can be interpreted as frequencies of 
stable vortices observed in the temperature field 
(Fig. 4).  
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Fig. 4. Frequencies of the first-order stable vortices 
(harmonics) fn in the fluctuation spectrum WT. 

The vortex frequencies fn turn out to be multiple 
to the frequency of main energy-carrying vortex 
f1 = 0.00973 Hz. Normalized to f1, they are natural 
numbers (n = 1, 2, ...): 

fn/f1 = 1, 6, 8, 11, 13, 17, 20, 31, 66, 68, 90, 93, 
109, 113, 117, 120, 127, 130, 133, 136, 144, 150, 

152, 157, 162, ... 
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(difference from integers does not exceed 0.03%, in 
the form of small corrections in the fourth, third, and 
second positions after point). An exact result of 
discrete break-up of the main energy-carrying vortex 
to smaller ones is multiple frequencies, from which 
the vortex diameters for each harmonics can be 
calculated by the equation 2πRn = υ/fn, n = 1, 2, .... 
They are shown in Fig. 5.  

As shows the comparison of data in Fig. 5 and 
Table 1 (point 5, ν = 5/6), the second frequency 6f1 
approximately corresponds to the outer turbulence 
scale L0 (2R1 = 294 cm, 2R2 = 49 cm), while the 
frequencies 127f1 and 130f1 (terminating the inertial 
interval) – to the inner one l0 (2R17 = 2.3 cm). 

Vortices, which are degradation products of 
larger vortices (their frequencies are multiple to 
lower ones) are observed in the viscous interval and 
in a part of inertial one. For example,  

fn/f2 

= 11, 15, 20, 24, 25,...(n = 8, 11, 16, 21, 22, ...); 

fn/f3 

= 15, 17, 18, 19, 36,...(n = 16, 20, 21, 23, 52, ...). 
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Fig. 5. Diameters of first-order stable vortices 2Rn in the 
fluctuation spectrum WT. 
 

The processes, observed inside the pavilion, are 
stable. Therefore, both the origination of vortex in 
the Bernar cell (due to a temperature gradient) and 
its break-up to smaller ones happen permanently 
(probably, with simultaneous self-replication). This 
evidently results in a threshold N-periodic flow with 
the frequencies fn, n = 1, 2, ..., N. Transformation of a 
small perturbation into a stable periodic flow follows 
from solutions of the Landau equation; the 
origination of time-periodic flows is called normal 
Hopf bifurcation. The Landau–Hopf scenario 
describes the incipience of turbulence as a sequence 
of normal bifurcations, generating a limiting N-
periodic flow (N >> 1) with, generally speaking, 
incommensurable frequencies. 

However, the frequency (phase) 
incommensurability is usually unrealizable. 
Therefore, it is considered now that normal 
bifurcations generate consequent subharmonics.2,11 It 
is easily seen that our results confirm the Landau–
Hopf scenario. 

The Ruelle–Takens scenario  

The Ruelle–Takens scenario can be considered 
as a refinement of the Landau–Hopf scenario. The 
difference is in the number of normal bifurcations, 
after which a flow can be considered as turbulent. 
According to the scenario, the turbulence occurs (a 
strange attractor appears) already after three normal 
bifurcations,2,12 i.e., a three-periodic flow (N = 3) 
can be already considered as turbulent. Then the 
convective flow becomes turbulent after origination 
of the main vortex in the Bernar cell and two events 
of its breakup.   

The Feigenbaum scenario 

The Feigenbaum scenario describes the 
turbulence incipience (appearance of a strange 
attractor) as a result of infinite consequence of 
period-doubling bifurcations.11 These bifurcations 
appear only after magnitude change of a certain 
controlling parameter μ, e.g., Reynolds or Rayleigh 
numbers, etc. As is known, the Feigenbaum scenario 
follows from the universality of location of periodic 
points x0, (x1

0, x1
1), (x2

0, x2
1, x2

2, x2
3), ... of 2m-multiple 

cycles. These points xm

k   on the x(μ) curve correspond 
to tree branches, which symmetrically bifurcate at 
critical bifurcation points μm. Asymptotic similarity 
relations  
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(m >> 1, α and δ are the  Feigenbaum constants) are 
correct for both x and μm. Here x is usually (due to 
the universality) considered as the main parameter, 
characterizing a nonlinear dynamic structure, e.g., 
coordinates (in meters), or standard (m/s) or 
normalized speed (Hz = 1/s), as in the case of 
Navier–Stokes equations. 

Though the equality σm(μ) = δ is asymptotic, its 
suitability already after two–three period doublings 
(up to several percents) has been shown.11 The theory 
has a high predictability due to the large rate of 
convergence δ (δ = 4.67). For approximate 
evaluation, this equality can be used at m ≥ 0. It is 
obvious that the equation σm(μ) = δ has the solution 
μm = cδ–m + μ∞, c = const. Taking m = 0, 1 in the 
solution, we obtain a set of equations to find the 
constants c and μ∞. Hence, c = μ0 – μ∞ and 
μ∞ = μ0 + (μ1 – μ0)δ/(δ – 1). As is known, one can 
take μ0 = 1 and μ1 = 3 for the logistic equation 
xm+1 = μxm(1 – xm), considered in Ref. 11, hence, 
μ∞ = 3.54508, which insignificantly differs from the 
exact value μ∞ = 3.56994, obtained in Ref. 11. Note, 
that μm (at μ∞ ≥ 0) can both increase (c < 0) and 
decrease (c > 0) with increase of m. 
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In our case, the value of the controlling 
parameter μ is fixed (pavilion sizes, temperature 
gradient, etc. are preset) and, hence, we can observe 
only products of vortex break-up. Due to self-
replicating of harmonics in the presence of doubling 
bifurcations, the harmonics, resulting from these 
bifurcations, are recordable. 

Let, for example, the basic system parameter x 
be a shift with the length dimension. Then x0 

(m = 0) can be identified with the radius of the basic 
vortex R1. The following variables (x1

0, x1
1) are to be 

the products of x0 break-up (nonsymmetrical 
bifurcation at m = 1). The only next largest radiuses 
R2 and R3 can play their parts (others are too small). 
 Hence, as it follows from the break-up 
diagram,11 the pairs R4, R5 or R5, R6 (the first 
element in each pair is approximately equal to a half 
of R2 and the second – to a half of R3) can be chosen 
as the pair x2

0, x2
2  (m = 2). 

Substituting these variables in the Feigenbaum 
equation, we obtain (R2 – R3)/(R4 – R5) = 2.97; 
(R2 – R3)/(R5 

– R6) = 2.30. Another pair x2
1, x2

3 (m = 2) 
should be chosen from evident break-up products of 
the vortices with radiuses R2 and R3 (their 
frequencies are multiple to f2 and f3); R8 and R16 
correspond to the first break-up elements (see above). 
From the Feigenbaum equation, found (R2 –
 R3)/(R8 – R16) = 6.11.  

Thus, though we are at the top of bifurcation 
tree (m = 1, 2), the obtained values of the modulus 
of left part of Feigenbaum equation are close to α 
and α2.  

Note, that Rn satisfy the equation Rn = Rn/2/β 
(see Fig. 5); In the inertial and viscous intervals 
β ≈ 2. However, β ≈ δ in the energy interval and in 
the inertial one near l0, hence, the equation 
Rn = Rn/2/δ agrees with the Feigenbaum similarity 
equation for the Fourier harmonics of x [Refs. 2 and 11]. 
 The Feigenbaum constants α, α2, and δ are best 
pronounced in the harmonic frequency plot. As it is 
seen from Fig. 4, the normalized frequency 
yn = fn/(nf1) undergoes two large jumps with the rise 
in n. The first jump is observed near the outer 
turbulence scale L0 (as a result, the frequency yn is 
saturated to the level α) and the second one – near 
the inner scale l0 (yn is saturated to the level δ 
bypassing the level α2). These jumps correspond to 
large steps of the function fn/f1 which can be 
interpreted as an analog of the “devilish staircase” 
(see Fig. 6). The presence of α, α2, and δ in Fig. 4 
and the satisfaction the similarity equation confirm 
the Feigenbaum scenario. 

Since ym → δ and σm(μ) → δ at m >> 1, then 
bifurcation values of the controlling parameter μm 
can be connected with the harmonic frequencies fm 
and vortex radiuses Rm, which are different 
parameters of the same turbulence incipience process. 
Actually,   |ym – δ| < ε and |σm* – δ| < ε are should be true 
for some positive ε, δ1, and δ2 as soon as m* > δ1 and 

m > δ2. Then |ym – σm*| = |(ym 

– δ) – (σm* 

– δ)| ≤ |ym – δ| + 
+ |σm* – δ| ≤ 2ε. Consequently, σm* → ym. The levels δ1 
and δ2 can be connected with each other, considering 
the domains of the confident convergence at 
sufficiently large m* and m. 

It is known2,11 that σm* converges rapidly after 
several iterations, therefore, m* ≈ 4–5 can be taken 
as the domain of confident convergence. This 
determines the level δ1. As is evident from Fig. 4, the 
frequency ym rapidly converges to δ near the inner 
scale l0 at m ≈ 17÷30 (level δ2). Hence, levels δ1 and 
δ2 and numbers m* and m are approximately related 

as δ2 ≈ 2
δ1 and m ≈ 2m*.  

Taking these relations into account and solving 
the equation σm(μ) = yn, where n ≈ 2m, obtain 

 μm = cyn
–m + μ∞, yn = fn/(nf1) = υ/(2πnf1Rn),  

 c = const, n ≈ 2m.   

The constant c is determined here after the choice of 
μ, for example, in the form of the Reynolds number 
Re, Rayleigh number Ra, or others. For approximate 
estimates, equation (2) and σm(μ) = δ are applicable 
at m ≥ 0. 

As an example, we show how equation (2) can 
be used provided μ is the Rayleigh number. Let 
μm = Ram /const in Eq. (2). The new constant simply 
leads to the overdetermination of c. 

Let us observe the break-up process of the main 
vortex in the Benar cell to the level, when the 
existence of steady periodic flows (vortices) becomes 
impossible. In this case, the Ra number decreases 
from some maximum Ra0 to the critical Racr. In the 
process of breaking up, Ram <<  Racr at a sufficiently 
large m and, hence, Ra∞ can be taken equal to zero in 
the first approximation. Then it follows  from 
Eq. (2): 

 Ram = Ram0 
yn0

m
0 yn

–m
,  

where m0 is the m value, at which Ram0 
is known 

(since n = 2m, then n0 = 2
m

0). If m0 = 0, then,  
according to the Feigenbaum numeration, Ram0 

is the 
Rayleigh number for the main vortex in the Benar 
cell. This number can be roughly found, taking the 
layer thickness h in Ra definition equal to the main 
vortex diameter. 

The bifurcation diagram of the main vortex 
break-up in the Benar cell is shown in Table 2 (the 
dependence of Ram numbers on the bifurcation 
number m), as well as the harmonic numbers n and 
vortex diameters 2Rn (cm) corresponding to m.  

As is seen, the bifurcation numbers Ram 

decreases with the rise of m and cross the level Racr 

(Racr = 657÷1708) at m = mcr ≈ 9–10. The same mcr 
value is obtained from the number of the recorded 
harmonics (in Fig. 4, the maximal n equals to 1849): 
mcr ≈ E(log n/log 2) = E(10.85) = 10, where E(x) is the 
integer part of x. 

(2)



186   Atmos. Oceanic Opt.  /March  2008/  Vol. 21,  No. 3 V.V. Nosov et al. 
 

 

Thus, the origination of the main vortex in the 
Benar cell and about ten events of its discrete break-
up are observed in the pavilion. Vortex diameters, 
corresponding to the critical values mcr (see Table 2), 
are within the 0.6–1.2 mm range. They agree with 
sizes of minimal vortices, existing in air.2  

 

Table 2. Bifurcation diagram in breaking-up main vortex  

m n Ram 2Rn, cm 

0 1 1.55 ⋅ 109 294 

1 2 5.15 ⋅ 108 49.1 

2 4 2.05 ⋅ 108 26.8 

3 8 2.76 ⋅ 106 4.5 

4 16 4.89 ⋅ 105 2.5 

5 32 1.94 ⋅ 105 1.5 

6 64 6.86 ⋅ 104 0.87 

7 128 2.65 ⋅ 104 0.50 

8 256 9.46 ⋅ 103 0.26 

9 512 1474.1 0.12 
10 1024 444.7 0.06 
11 2048 67.5 0.05 

 

On the base of the performed analysis, the 
known stochastic scenarios can be divided into two 
groups. The first one includes scenarios of origination 
of periodic flows from laminar ones. Among these 
scenarios are, first of all, Pomeau–Menneville and 
Rayleigh–Benar convection. The second group 
includes break-up scenarios (degeneration) of the 
appeared vortex periodic flows, the main of them is 
the Feigenbaum scenario. The Landau–Hopf and 
Ruelle–Takens (origination of the limiting N-
periodic flow) scenarios contain features of both 
groups. 

It follows from the obtained results, that 
scenarios of both groups are confirmed in the 
incipient turbulence, a periodic flow is originated 
(the main vortex in the Benar cell) and breaks up. 
These processes in principle (in the simplest 
situations), are confirmed by known solutions of 
nonlinear equations of hydrodynamics. However, 
such solutions for a general case are presently 
unknown.  

It is clear, that vortex solutions should exist, 
since they are experimentally observed. It is also 
clear, that the stability of vortex solutions will be 
determined by nonlinear resonances (both between 
external forces and dissipative processes and between 
harmonics with commensurable frequencies). 
Therefore, the mechanism of hydrodynamic 
turbulence incipience and existence becomes more 
clear, in which the role of stochastization essentially 
decreases. Then the turbulence, usually considered as 
a merely random event, turns to be significantly 
determinate.    

The turbulence determinacy is much stronger 
than it could be expected from the above analysis. 
Actually, it follows from the consideration of the 
threshold-filter damped spectrum harmonics WT in 

Fig. 3, that their greatest maxima (second-order 
harmonics) can be extracted with the same filter. It 
turns out that the local structure of  second-order 
harmonics location (between the neighboring first-
order ones) is similar to the structure of first-order 
harmonics location throughout  the spectrum WT. 
The local self-similarity of the spectrum or, in other 
words, the fractal structure of the turbulence 
spectrum is observed. 

The frequency dependence of the first- and 
second-order harmonics (normalized frequencies fn/f1 

of  harmonics) is shown in Fig. 6. This dependence is 
usually called the “devilish self-similar staircase”; 
here each inner space between main steps is similar to 
the whole staircase. Each dash (step) answers its 
fn/f1 value (all these values are integers in Fig. 6). 
Long dashes correspond to first-order harmonics and 
short dashes – to second-order ones. 
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Fig. 6. “Devilish self-similar staircase” (normalized 
frequencies of the first- and second-order harmonics fn/f1). 
The fragment shows the distance between neighboring 
harmonics fn – fn–1 (n = 2, 3, ...): between the first-order 
harmonics for the whole spectrum (the bottom plot) and the 
second-order harmonics in the 0.19–0.64 Hz range (the 
upper figure). 
 

The distances between arguments of the 
neighboring harmonics fn – fn–1 (n = 2, 3, ...) as 
functions of frequency (of frequencies fn) are shown 
in the fragment in Fig. 6: the distances between the 
first-order harmonics for the whole spectrum WT (see 
Fig. 3) are shown in the bottom plot. (As is seen 
from Fig. 1, it is sufficient to consider only the 0–
10 Hz frequency range in the spectrum WT, without 
weak noise component, which is caused by the 
transfer of the motion energy to heat and is observed 
at frequencies higher than 10 Hz.) The upper plot in 
the fragment shows the distances between arguments 
of second-order harmonics for the longest range 
between the first-order harmonics (0.19–0.64 Hz). As 
is seen from the “devilish staircase,” other ranges 
contain a less number of second-order harmonics 
(because of limited experimental facilities) and are 
not convenient for the analysis.      

The comparison of the top and bottom plots in 
the fragment confirm a similarity of locations of the 
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local structures of second-order- and first-order-
harmonics in the whole spectrum WT. The devilish 
staircase is truly self-similar and the spectrum is 
fractal. Since second-order maxima are significantly 
weaker than first-order ones, the second-order 
harmonics can be called the fractal shadows of the 
first-order ones. Thus, the process of turbulent flows 
originating and breaking up is evidently determinate 
even in weak spectral particulars. 

As is known from meteorology, sufficiently 
stable vortex formations (cells) of different scales 
exist in the atmosphere. The Ferrel and Hadley cells 
are the largest among them (up to 5000 km in 
radius). They can be considered as modifications of 
Benar cells in a thin spherical layer (at the Earth 
scale). Somewhat smaller cells (cyclones, 
anticyclones, thunder-cells, tornados, etc.) exist there 
as well. The break-up products of these vortices have 
clearly pronounced deterministic character 
(corresponding to the non-Kolmogorov incipient 
turbulence) and are observable in the atmosphere. 
Open-air measurement data (The Sayan Solar 
Observatory, July 5, 2007) are shown in Fig. 7 along 
with the modeled results of the steady-wind transfer 
through point 5 [Ref. 5, Fig. 2] of a frozen spatial 
pattern of flows inside the LSVT (sequential slow 
transfer of data, recorded at seven abreast 
neighboring points).  
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Fig. 7. Kolmogorov turbulence is the result of mixing of 
determinate vortices. WT are the smoothed spectra; DT is 
the structure functions of temperature fluctuations: curve 1 
corresponds to summer daytime measurements in mountains 
(dry, cloudy). The altitude above the sea level is 2000 m 
and above the underlying surface it is 32 m. (To avoid 
superposition, spectral curve 1 is 0.011-Hz shifted left); 
curve 2 corresponds to wind transfer of a frozen spatial 
pattern of flows inside the LSVT through one point. 

 

Comparison of Figs. 7, 1, and 9 from Ref. 5 
shows that the results for open air, given in Fig. 7, 
correspond to the determinate incipient non-
Kolmogorov turbulence (WT ∼ f 

–8/3 within the 
inertial interval). On the contrary, transfer of 

determinate vortices, formed inside closed rooms, 
through one point results in the Kolmogorov 
turbulence (WT ∼ f 

–5/3). Hence, the conclusion can 
be drawn that the Kolmogorov turbulence is a 
mixture of determinate different-scale vortices 
observed in the incipient turbulence. 

3. Shifts of spectral lines  
due to pavilion atmosphere 

The above results for the turbulence inside the 
spectrograph pavilion allow us to answer the 
practically important question about the influence of 
air inside specialized telescope rooms on the quality 
of astronomic observations. First of all, errors of 
spectral measurements in LSVT are of interest. These 
errors in the horizontal Ebert scheme are mainly 
determined by horizontal shifts of spectral lines due 
to the turbulence and regular refraction in the 
pavilion atmosphere.   

At present, the optical beam shifts in open air 
are sufficiently well studied,13–18 as well as jitter of 
optical source images1,16–19 (usually in telescopes free 
of interior medium fluctuations). However, in the 
same Ebert scheme a case appears when several 
optical elements are separated by air layers with 
fluctuating characteristics. There appear multiple 
reflections by a system of mirrors, diffraction grating, 
etc. in a turbulent medium. Therefore, the problem of 
optical beam shifts in such multilayer medium 
becomes more complicated.  

This problem can be solved within the Erenfest 
theorem, generalized to the case of medium with 
discontinuous characteristics, e.g. a system of 
adjacent regions separated by planes. The field of the 
passed wave uout at each plane is connected with the 
field of incident one uin through some integral 
transformation. Within each region (layer), the 
dielectric permittivity ε is the sum of the random εt 
and regular εr functions (ε = εt + εr, ε1 = ε – 1). Such 
discontinuous media are characteristic for segmented 
atmospheric-optical systems. 

In quantum mechanics, the Erenfest theorem 
expresses the particle coordinates as the product of 
probability density and potential energy gradient. 
The theorem was proved again by V.I. Klyatskin and 
A.I. Kon13 for light propagation in a turbulent 
medium. It expresses the coordinates of beam energy 
center Rc(x) at a path of x length via the product of 
intensity I(x, R) and dielectric permittivity gradient 
∇

R
ε1(x, R). For the medium with discontinuous 

characteristics this theorem was proved by 
V.V. Nosov.20 

Let an atmospheric-optical system consist of N 
layers separated by planes at points xk, 
k = 1, 2, ..., N (x1 < x2 < ... < xN ≤ x). Preset the 
boundary condition in x1 plane. For simplicity, 
consider the case, when uout is obtained from uin by 
the ordinary amplitude-phase transformation: 
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 uout(xk, R) = tk(R)uin(xk, R),  

 tk(R) = exp[–R2/ak

2 – ikR2/(2Fk

2)],  

 k = 2π/λ, tk(R)tk

*(R) = Tk (R). 

Here ak and Fk are the radius and the curvature 
radius, respectively, of the phase front of an optical 
element located in xk plane (k is the wave number). 
This transformation allows consideration of effects of 
deflection by systems of lens and apertures, as well 
as multiple reflections from spherical and flat 
mirrors.  

For coordinates of beam energy center Rc(x) at 
a path of x length (x ≥ x

N
) obtain 
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Here αk(x′) are the angular coordinates in the kth 
layer of a beam energy center, the intensity of which 
in the transverse plane is limited by the amplitude of 
filter function T

i(k)(R) (the filter for symmetrical 
coaxial optical elements is equivalent to an aperture 
with radius being the smallest among radiuses of all 
following elements k + 1, k + 2, ..., N); β(x1) is the 
similar spatial coordinates of the center in the initial 
plane x1 

(boundary condition);  

 γ(x′, R, ρ) = u(x′, R + ρ/2)u*(x′, R − ρ/2),  

 γ (x′, R, 0) = I(x′, R), 

p(x
N
) is the flow at the output of the last Nth 

optical element; αk(x) is can be identified with the 
angular coordinates of the source image (within the 
analyzed plane x) after passing through k layers in 
the case when tk(R) is a lens and x ≥ xk. 

The sum in Eq. (3) vanishes at N = 1, 
T

i(k)(R) = 1, F
i(k)
–1  = 0, while β(x1) and ∂β(x)/∂x | x=x1 

correspond to usual boundary conditions for beam 
center coordinates. In this case, the tradition Erenfest 
theorem follows from Eq. (3), yielding beam center 
coordinates in open air. At N = 2 and ε1 = 0, there 
exist spatial coordinates (in the x plane) in the 
second layer Rc(x) in Eq. (3) of a source image, 
located in the initial plane (this is the image jitter 
provided t2 corresponds to a lens).  

As is seen from Eq. (3), after the wave has 
passed through N layers, the beam center coordinates 
are the sum of (random and regular) coordinates of 
beam shifts in the last layer and coordinates of image 
displacements by each of N preceding apertures. The 
displacements of every image, integrated over a 
previous layer, are also added. Hence, the generalized 
Erenfest theorem combines beam shifts, image 
displacements, and regular refraction in compound 
atmospheric-optical systems.  

When proving the theorem, an equation for γ in 
segmented systems has been obtained, from which a 
flow equation has been derived. It has been shown 
that the fluctuating part of a flow is the image jitter 
of optical dipole (the difference between jitters of 
two equal contacting apertures). Therefore, the flow 
dispersion first increases with the rise in β0

2  (β0
2 = 

= 1.23Cn

2k7/6x11/6) and then decreases. Therefore, the 
Erenfest theorem allows comparatively simple 
averaging of the ratio of two random variables in the 
image displacement vector. 

Then, the equation ∇ργ | ρ=0 = iI(x, R)∇R 

S(x, R) 
in Eq. (3), connecting the wave filed u with the 
phase S and intensity I is used. There are situations, 
when the phase degrades and is not longer an 
analytical function, then uncertainties of type 

∇ργ | ρ=0 = ∇ρδ(ρ)| ρ=0 ∼ ∇ρδ
2(ρ) appear. To eliminate 

such singularity, it is necessary to change the way of 
going to limits. 

After the phase singularity is eliminated, the ray 
approximation, used in calculations of the image 
displacement,19 yields results coinciding with those 
from Ref. 18. In particular, equations for dispersion 
of noncoherent source image displacements, jitter 
dispersion in strong fluctuations (∼ β0

8/5), and the 
dependence on observation plane position are similar. 
It has been ascertained that the ray approximation in 
open air virtually coincides with the mean-intensity 
approximation13–18 for beam shifts. 

For symmetrical coaxial apertures, β(x1) = 0 
and ∂β(x)/∂x | x=x1

 = 0, then <Rc(x)> = 0. The mean 

intensity of a symmetrical beam in a segmented 
atmospheric optical system can be expressed by the 
equation 
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where ae(x) is the effective beam radius at the 
distance x. Then, in the ray approximation 
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To estimate the errors of optical measurements, 
an optical path inside the BSVT spectrograph 
pavilion [Ref. 5, Fig. 1] is presented as a sum of 
three segments, i.e., entrance window – diagonal 
mirror (collimator, F2 

= 9.5 m [Ref. 4]); diagonal 
mirror – grating – camera mirror; and camera mirror 
– output slit of the spectrograph (CCD-camera4). An 
optical wave is approximately spherical at the first 
segment, plane at the second one (since the grating 
does not give wide broadening of the reflected 
beam,21), and a focused beam at the third segment. 
In this case, all optical elements in the scheme are 
coaxial and approximately symmetrical and N = 3 in 
Eq. (3). To simplify the calculations, take ν = 1/3 in 
Eq. (1) and find path profiles of outer Karman L0 
and inner l0 turbulence scales from Table 1 at 
ν = 1/3. In calculations, the Karman spectrum model 
is usually changed to exponential one, therefore, the 
connection between inner scales, used in these models, 
should be taken into account.16–19 Then the required 
path profiles Cn

2
 are obtained from Table 4 in Ref. 5. 

 Having calculated the dispersion 2

c ,< >R  we 
find that the horizontal random shifts of spectral 
lines in the optical range (0.4 μm < λ < 0.8 μm) are 
about 0.6 arc-second due to pavilion effects 
(β0 ≈ 0.19). This result is true for the case when the 
camera mirror is placed at point 7 [Ref. 5, Fig. 1] 
and the mutual overlapping of paths in the pavilion 
is negligible. When the camera mirror is at point 6, 
the path overlapping should be taken into account. 
In this case, random shifts can attain 1 arc-second. 

Note, that spectral lines shift slowly with a 
frequency of about 0.01 Hz. This follows from 
estimations of characteristic frequencies, obtained 
from data of Ref. 19. Due to low shift frequencies, 
the incipient turbulence approximates to the regular 
refraction by its optical properties. 

Temperature gradients in the spectrograph 
pavilion generate not only the Benar cell and the 
incipient turbulence, but also the regular profile of 
dielectric permittivity gradient, resulting in regular 
refraction. To take into account this effect in 
Eq. (3), preset ∇⊥ε1 = 2(n – 1)(∇⊥P/P – ∇⊥T/T), 
where n is the air refractivity; P is the pressure; T is 
the average temperature. Then we find that the 
regular refraction contributes insignificantly in the 
measurement error, i.e., the side one gives 0.01 and 
vertical one gives 1 arc-second. 
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