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Equations for calculating small-angle phase function (or element of scattering matrix f11) and small-
angle amplitude of light scattering by an optically “soft” finite-length circular cylinder have been derived in 

the Wentzel–Kramers–Brillouin (WKB) approximation for incident light, normal to the cylinder axis. 
The more precise general equation for light scattering amplitude by an optically “soft” finite-length 

circular cylinder is given in WKB approximation for incident light, normal to the cylinder axis. 
 
The study of light scattering by non-spherical 

particles, which are components of natural and 
anthropogenic aerosols, hydrosol suspensions, and ice 
crystals, is of great importance for monitoring air and 
ocean, in colloid chemistry, etc.1 

The Rayleigh–Gans–Debye (RGD), anomalous 
diffraction, and Wentzel–Kramers–Brillouin (WKB) 
approximations are convenient to be used when dealing 
with optically “soft” (⏐m – 1⏐ << 1, where m is the 
relative refractive index of the particulate matter) 
light scattering by non-spherical particles. 

For optically “soft” particles with sizes larger than 
the wavelength, the most part of the scattered energy 

is usually concentrated in small scattering angles.3 In 
this work, the small-angle scattering phase function 
of a finite-length circular cylinder is analyzed in 
WKB approximation for incident light, normal to the 
cylinder axis. 

 

1. General equation  
for light scattering amplitude 

 
To take into account spatial light scattering 

correctly, it is necessary to introduce two angles in 
two mutually perpendicular planes, i.e., the scattering 
angle β, measured from the forward scattering direction 
(along the y axis) and the additional azimuth 
scattering angle α, measured from the z axis (Fig. 1). 
  Using an integral expression for light scattering 
amplitude, obtain the following scalar equation in 

WKB approximation,4,5 more complex in comparison 
with Ref. 4: 
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where ψ1(α, β, t, ϕ) = t(sinα sinβ cosϕ + [m – sinα cosβ] × 

× sinϕ), ψ2(t, ϕ) = 2 21– cos ;t ϕ  a is the cylinder 

radius; H is the cylinder height; Δ = 2ρ(m – 1) is the 
phase shift, ρ = ka is the diffraction parameter of the 
cylinder; k = 2π/λ is the wave number; λ is the 
wavelength in a dispersion medium. 
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Fig. 1. Geometry of light scattering by a circular cylinder 
of a in radius and H in height (i and s are unit vectors of 
incident and scattered light, respectively). 

 

However, if the azimuth scattering angle is close to 

the forward direction, i.e., α → π/2, then equation (1) 
takes the form, obtained by us in Ref. 4. 

Again, restrict ourselves to the case of α = π/2, 
which essentially simplifies the following equations, 
though somewhat deteriorates their generality. 

 

2. Small-angle light scattering 
amplitude 

 

At small scattering angles β << 1 and α = π/2, 
sinβ ≈ β, cosβ ≈ 1, sinα = 1, and cosα = 0, i.e., 
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ρψ1(α, β, t, ϕ) = t[ρβcosϕ + Δsinϕ/2]; hence, from 
Eq. (1) obtain 
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where Js(x) and Hs(x) are the Bessel function of the 
first kind and the s-order Struve function. 
 

3. Small-angle scattering  
phase function 

 
The light scattering phase function (or the 

scattering matrix element f11) for natural light (chaotic 

polarization) is calculated as 
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where ⎜f(β)⎪2 is the squared modulus of light scattering 
amplitude. 

Using Eqs. (2) and (3), we obtain the small-angle 
scattering phase function: 

 
( )

211

2 2
11 1 10

( –1) ( )( )
( ) ,

(0) 2 ( ) ( )

j
j j

j
j

cf

f J H

∞

=

Δβ
= ρβ

⎡ ⎤Δ Δ + Δ⎣ ⎦
∑  (4) 

where 

 

( )

2 2

1 1

2

1

1 - 1 1 - 1

0

1 - 1 1 - 1

0

( ) ( )

!

( ) ( ) ( ) ( )
2

!( – )!
( )

for even , 2 ,

( ) ( ) ( ) ( )
2

!( – )!

for odd , 2 1,

+ +

−

+ + + +

=

+ + + +

=

⎧ Δ + Δ
+⎪

⎡ ⎤⎪ ⎣ ⎦
⎪
⎪ Δ Δ + Δ Δ
⎪ +
⎪⎪

Δ = ⎨
⎪ =
⎪

Δ Δ + Δ Δ⎪
⎪
⎪
⎪

= +⎪⎩

∑

∑

n n

n
s j s s j s

s
j

n
s j s s j s

s

J H

n

J J H H

s j s
c

j j n

J J H H

s j s

j j n

 

n = 0, 1, 2, 3, … . 
The series in Eq. (4) converges rapidly. For 

example, four terms of the series are required at 
m = 1.03 and ρβ ≤ 1 for obtaining an error less than 

5%, while at ρβ ≤ 2 seven terms are required. However, 
large diffraction parameters ρ > 5–10 should be used 

for accurate calculation of small-angle phase function 
in Eq. (4). 

The imaginary part of the light scattering 

amplitude (2) can be negligible as compared to the real 
one at small phase shifts Δ < 1; hence, equation (4)  
will be somewhat simplifies: 
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Then, expanding the Bessel function in a series 
in Eq. (5) at small phase shifts Δ < 1, obtain the 
equation 
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similar to the equation for phase function in RGD 
approximation at large diffraction parameters 
ρ > 1.5,6 

On the contrary, at large phase shifts Δ > 10, the 
real part in light scattering amplitude (2) can be 
totally negligible as compared to the imaginary one, 
which results in 
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Then, when Δ-series expanding the Struve function 
in Eq. (7) at Δ → ∞, obtain 
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Note, that equation (8) coincides with the phase 
function for the Fraunhofer diffraction by a long slit 
of 2ρ in width.7 

Figure 2 shows the dependence of the small-angle 
light scattering phase function f11(β)/f11(0) on ρβ  
for an infinitely long cylinder (rigorous solution) and 
a finite-length circular one in WKB approximation 
for the refractive index m = 1.03 and several  
phase shifts. 

The algorithm from Ref. 8 was used in 

calculations for the infinitely long cylinder: Eq. (4) 
with seven terms in the series – for the finite-length 
circular cylinder in WKB approximation, Eqs. (6) 
and (8) – for RGD approximation and the Fraunhofer 
diffraction, respectively  

At small phase shifts, small-angle WKB phase 
function (4) evidently is transforms into corresponding 
RGD phase function (6) (Fig. 2a), while it 
asymptotically tends to Fraunhofer diffraction 
equation (8) at large phase shifts (Fig. 2b). Note, 
that characteristic damped oscillations of small-angle 
phase function are observed with an increase of phase 
shifts similarly to the integral light scattering phase 
function of spherical particles.9 
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Fig. 2. Normalized small-angle light scattering phase function 
f11(β)/f11(0) as a function of ρβ for an infinitely long (1) and 
finite-length circular cylinders in WKB (2) and RGD (3) 
approximations and for the Fraunhofer diffraction (4) at the 
refraction index m = 1.03 and phase shifts Δ = 0.72 (a) and 
Δ = 90 (b). 

Conclusion 
 
A more precise general equation for light 

scattering amplitude by an optically “soft” finite-
length circular cylinder is given in WKB 

approximation for incident light, normal to the 
cylinder axis, as well as the equations for small-angle 
phase function and light scattering amplitude at 
different phase shifts Δ. Asymptotic expressions for 
small-angle scattering phase function for the above 
cylinder are derived at small (Δ < 1) and large 
(Δ → ∞) phase shifts. 
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