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The sensitivity of the interferometer to transversal or longitudinal displacements of a plate 
surface diffusively scattering light is analyzed. It is shown that interference patterns are located in the 
hologram and Fourier planes. Spatial filtration of the diffraction field is required. The experimental 
results agree well with theoretical prerequisites. 

 

When controlling the transversal displacement of 
a flat surface (as it was shown in Ref. 1) diffusively 
scattering light (hereinafter scatterer), at a double-
exposure recording with a Kepler tube of the hologram 
of the focused scatterer image, the interference patterns 
are localized in the hologram plane and in far 
diffraction zone. In the case of interference pattern 
localization in the hologram plane, the interferometer 
sensitivity linearly depends on the telescope 

magnification and is independent of the curvature of 
a spherical wave of the coherent radiation, used to 
illuminate the scatterer when recording the hologram. 
For the interference pattern, localized in the Fourier 
plane, the interferometer sensitivity depends on the 
focal length of the telescopic lens.  

When controlling longitudinal displacement of 
the scatterer, the interferometer sensitivity for an 
interference pattern, localized in the hologram plane, 
is in squared relationship with the telescope 

magnification and independent of the curvature of a 
spherical wave of the coherent radiation, used to 
illuminate the scatterer when recording the hologram. 
For an interference pattern, localized in the Fourier 

plane, the interferometer sensitivity is in squared 

relationship with the focal length of the telescopic lens 
of the Kepler tube. In addition, the center of the 
system of concentric interference rings, characterizing 
longitudinal displacement of the scatterer, is fixed 

while carrying out the spatial filtration of the off-axis 
diffraction field both in the hologram and Fourier 

planes. 
In this work, peculiarities of formation of 

interference patterns are analyzed, which characterize 
transversal or longitudinal displacements of the 

scatterer at a double-exposure recording of the quasi-
Fourier and Fourier holograms with the use of a 

Galilean telescope in order to determine the 

interferometer sensitivity. 
In Fig. 1 the opaque screen 1 in the plane (õ1, ó1) 

is illuminated by coherent radiation with divergent 
spherical wave of the curvature radius R. Radiation, 
diffusively scattered by the screen and passing the 

microscope optics of the Galilean telescope (positive 
thin lens L1 is the objective and negative thin lens L2 
is the ocular), is recorded during the first exposure 
on the photoplate 2 in the plane (õ4, ó4) by means of 
the off-axis reference spherical wave of the curvature 
r; θ is the angle between the axis of a spatially 
limited reference beam with the normal to the 

photoplate plane. Before the second exposure, the 

opaque screen is displaced in its plane, e.g., by α 
toward the x-axis. 
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Fig. 1. Schematic view of the two-exposure hologram 

recording: 1 is the opaque screen; 2 is the photoplate; L1 is 

the positive and L2 is the negative lens; ð1 and ð2 are the 
objective apertures.  

 
Write the distribution of the field complex 

amplitude, corresponding to the first exposure, to the 
Fresnel approximation with accounting for the 

diffraction limitedness, in the object channel in the 
photoplate plane in the form  
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where k is the wave number; t(õ1, ó1) is the complex 
amplitude of the scatterer transmittance, being the 
random function of coordinates; f1 is the focal length 
of the positive lens L1 with the pupil function 
ð1(õ2, ó2) [Ref. 2]; f2 is the focal length of the 
negative lens L2 with the pupil function ð2(õ3, ó3); 
Δ = f1 – f2 is the microscope tube length; l1 and l2 
are the distances between the planes (õ1, ó1), (õ2, ó2) 

and (õ3, ó3), (õ4, ó4), respectively; (õ2, ó2) and (õ3, ó3) 
are the principal planes of the lens L1 and L2. 

Similar to Refs. 3 and 4, equation (1) can be 
represented with the convolutions of functions, i.e., 
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where ⊗ denotes the convolution; (1/L1) = 1/Δ + 
+ 1/f2 + 1/l2; (1/L2) = 1/l1 – 1/f1 + 1/Δ – L1/Δ

2 are 
the contractions; Ð1(õ4, ó4) is the Fourier transform of 
ð1(õ2, ó2) with the spatial frequencies L1x4/λl2Δ and 

L1y4/λl2Δ (λ is the wavelength of the coherent light 
source, used for hologram recording and retrieval); 
Ð2(õ4, ó4) is the Fourier transform of ð2(õ3, ó3) with 
the spatial frequencies x4/λl2 and y4/λl2. 

Let the width of the function Ð1(õ4, ó4) be about 
λl2Δ/d1L1,

5 where d1 is the pupil function of the lens 
L1 (see Fig. 1). If the phase change of a spherical 
wave with the curvature l 
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convolution with Ð1(õ4, ó4) in Eq. (2) and obtain 
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The width of Ð2(õ4, ó4) is about λl2/d2 (d2 is  
the pupil function of the lens L2); therefore, within 
the domain of the function existence, the phase 
change of a spherical wave with the curvature  
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plane (õ4, ó4). Then, take the factor 
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integral of convolution with Ð2(õ4, ó4) in Eq. (3). 
Besides, if d1 = μd2 (μ = f1/f2 is the magnification of 
the Galilean telescope), then, with accounting for 
L1 = l2Δ/(μl2 + Δ) and L2 = l1(μl2 + Δ)/μl, where 
l = l2 + Δ/μ + l1/μ2, the distribution of the field 

complex amplitude in the object channel in the 

photoplate plane for an area of D ≤ d1l(μl2 + Δ)/ 
/(l1l2 + μlΔ) in diameter takes the form  
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where r = l; F(õ4, ó4) is the Fourier transform of 
t(õ1, ó1) with the spatial frequencies x4/λμl and 
y4/λμl; Ð1(õ4, ó4) is the Fourier transform of 
ð1(õ2, ó2) with the spatial frequencies x4/λ(μl2 + Δ) 
and y4/λ(μl2 + Δ). 

It follows from Eq. (4), that the quasi-Fourier 
transform of the transmission function of opaque 
screen 1 is formed in the plane of photoplate 2 (see 
Fig. 1) within the above area. In this case, each point 
of the screen is extended up to the size of the 
subjective speckle, defined by the width of the 
function Ð1(õ4, ó4) ⊗ Ð2(õ4, ó4); and the distribution 
of the phase of a divergent spherical wave with the 
curvature l is superimposed on the subjective speckle 
field. In the special case of scatterer illumination by 
coherent radiation with a convergent spherical wave 
of the curvature μ2l, the distribution of the field 
complex amplitude in the plane (õ4, ó4) corresponds 
to the Fourier transform of t(õ1, ó1). 

The distribution of the complex amplitude of the 
field, corresponding to the second exposure, in the 
object channel in the photoplate plane is defined by 
the equation (to the used approximation) 
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With accounting for the Fourier transform properties 
and the known identity,3 equation (5) takes the form 
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follows from the integral representation of convolution 
operation in Eq. (6). Hence, the distribution of the 
complex amplitude of the field, corresponding to the 
second exposure, in the object channel in the 

photoplate plane within the above area takes the form 
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According to Eq. (8), the transversal displacement 
of the scatterer is accompanied by variation of a slope 
angle of the subjective speckle-field, corresponding to 
the second exposure, by a/µl relative to the speckle-
filed of the first exposure. In addition, the subjective 
speckle component, caused by the diffraction of a 
plane wave on the Galilean telescope objective pupil, 
is homogeneously displaced to (R + µ

2l)a/µR. In this 
case, the displacement direction depends on the sign 
of the curvature R. This follows from the fact that 
the Fourier transform of t(õ1, ó1) is formed in the 
photoplate plane for negative R, equal in modulus to 
µ

2l. In this case, displacement of the above subjective 
speckle component is absent. However, displacement 
in opposite directions takes place at R < µ2l and 
R > µ2l. In its turn, the displacement for positive R 
is co-directed with those of the scatterer.  

If the quasi-Fourier or Fourier hologram is 
double-exposure recorded with a convergent reference 
spherical wave with the curvature r = l at the linear 
part of the photo-material blackening curve, then  
the distribution of the complex amplitude of its 

transmittance, corresponding to the (–1)-st diffraction 
order, on the base of Eqs. (4) and (8) is defined by 
the equation 
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Let the diffraction field be spatially filtered at 
retrieving the double-exposure hologram in the its 
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plane on the optical axis with a round aperture in the 
opaque screen p0 (Fig. 2). 
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′
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32 
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(x4, y4)                      (x5, y5)

 
Fig. 2. Schematic view of recording of the interference 
pattern localized in the scatterer-imaging plane: hologram 2; 

recording plane 3; positive lens L 0
′; spatial filter ð0. 

 
In this case, within the filtering aperture diameter, 

the phase change kax4/μl does not exceed π. Then 
the distribution of the field complex amplitude at the 
spatial filter outlet is defined as  
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where ð0(õ4, ó4) is the transmission function of the 
opaque screen with a round aperture.7 

Based on Eq. (10) and with accounting for  
parity of the functions ð1(õ2, ó2) and ð2(õ3, ó3), the 

distribution of the field complex amplitude in the 

back focal plane of the lens L 0
′ (see Fig. 2) with the 

focal length f0 is defined by the equation 
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where Ð0(õ5, ó5) is the Fourier transform of ð0(õ4, ó4) 
with the spatial frequencies x5/λf0 and y5/λf0. 

If the variation period of 1 + exp [ik (R + 
+ μ2l)

 

a2/2μ2Rl] × exp [ik (R + μ2l)
 

ax5 

/μRf0] is at 
least an order of magnitude9 larger than the width of 
Ð0(õ5, ó5), determining the size of subjective speckle 
in hologram recording plane 3 (see Fig. 2), within 
limits of overlap of the functions ð1[(Δ + μl2)õ5/f0, 
(Δ + μl2)y5/f0] ð2(l2õ5/f0, l2y5/f0), ð1[(Δ + μl2)õ5/f0 + 
+ (Δ + μl2)a/μl, (Δ + μl2)y5/f0] ð2(l2õ5/f0 + l2a/μl, 
l2y5/f0), where the field is non-zero, then we take it 
out of the convolution integral in Eq. (11). Again, 
with accounting for smallness of (Δ + μl2)a/μl and 
l2a/μl, the light distribution in the plane (õ5, ó5) has 
the form  
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ikl R l
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Rf

⎡ ⎤+ μ
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 (12) 

It follows from Eq. (12) that the diameter D0 of 
the illuminated area of the opaque screen (see Fig. 1) 
is to satisfy the condition D0 ≥ d1μl/(Δ + μl2) for 
diffraction boundedness of the Galilean telescope’s 

field of view. Besides, the subjective speckle structure 
is modulated by fringes, alternate on the x-axis, in 

the far focal plane of the lens L 

′
0 (see Fig. 2), where 

a scatterer image is forming within the diameter of 
the telescope pupil (since l2 < (Δ + μl2)/μ). 

The measurement of the fringe period for the 

known λ, μ, R, l, and f0 allows controlling the 
transversal displacement of the scatterer. In this case, 
the sensitivity of the interferometer depends both on 
the value and sign of curvature of a spherical wave of 
the coherent radiation, used to illuminate the scatterer 
while recording the hologram. Thus, for a positive R, 
the fringe period Δõ5 = λμRf0/(R + μ2l) a decreases 

with decreasing R due to an increase of displacement 
of the above component of the subjective speckle, 
corresponding to the second exposure, in the hologram 
plane.  

When opaque screen 1 (see Fig. 1) is illuminated 
with coherent radiation with convergent spherical 
waves, the fringe period increases with decreasing R 
within a range μ2l ≤ R ≤ ∞ up to infinity when 
R = μ2l, and the Fourier transform of the function 
t(õ1, ó1) is formed in the hologram plane. In this case, 
the speckles, corresponding to the second exposure, are 
static. A further decrease of R results in interferometer 
sensitivity enhancement at recording of the interference 
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pattern, localized in the scatterer-imaging plane, due 
to occurrence and increase of a homogeneous 

displacement of the subjective speckle component, 
caused by the diffraction of a plane wave on the 
pupil of Galilean telescope, in the hologram plane. It 
also follows from Eq. (12) that the spatial extension 
of the interference pattern s = d1f0/(μl2 + Δ) in the 
Fourier plane. 

Consider spatial filtration of the diffraction field 
on the optical axis in the scatterer-imaging plane 
(õ5, ó5) at the stage of retrieving the double-exposure 
quasi-Fourier hologram (Fig. 3). Assume, for brevity, 
that hereinafter the focal lengths f01 and f02 of the 

lenses L 

′
0 and L 

′′
0  are equal to f0, i.e., the two-

component optical system of the positive lenses L 

′
0 

and L 

′′
0  forms the hologram image in the plane 

(õ6, ó6) with the unity magnification. 
 
 

(x4, y4) (x5, y5) (x6, y6)

2 3

θ 
ð0

f01 f01 f02 f02

L 

′
0 L 

′′
0  

 
Fig. 3. Schematic view of recording of the interference 

pattern, localizing in the hologram plane: hologram 2; 

recording plane 3; positive lenses L 0
′ and L 0

′′; spatial filter ð0. 
 
In this case, based on the integral convolution 

representation, define the distribution of the field 
complex amplitude at the hologram output as 
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(13) 

Hence, neglecting the spatial boundedness of the field 

due to finite sizes of the hologram and lens L 

′
0 (see 

Fig. 3), define the distribution of its complex 
amplitude in the plane (õ5, ó5) by the equation 
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where F1(õ5, ó5) is the Fourier transform of the 
function t[μRξ/(R + μ2l), μRη/(R + μ2l)] with the 
spatial frequencies x5/λf0 and y5/λf0. 

If the phase change [k (R + μ2l) ax5/μRf0] ≤ π 
within the diameter of the filtering aperture of the 
spatial filter p0 (see Fig. 3), than the distribution of 
the field complex amplitude at its outlet takes the form 
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where ð0(õ5, ó5) is the transmission function of the 
spatial filter. 

Hence, after the Fourier transform, the 

distribution of the field complex amplitude in the  

plane (õ6, ó6) (see Fig. 3) is defined as 

 ( )
( )2 2

6

6 6 2
, 1 exp exp –

2

ik R l a ikax
u x y

lRl

⎧⎧ ⎫⎡ ⎤+ μ ⎛ ⎞⎪⎪ ⎪⎢ ⎥+ ×⎨⎨ ⎬⎜ ⎟μ⎢ ⎥μ ⎝ ⎠⎪⎪ ⎪⎣ ⎦⎩ ⎭⎩

∼
 

 
( )

( )2 2

6 6
2

exp –
2

ikR
x y

l R l

⎡ ⎤
⎢ ⎥× + ×
⎢ ⎥+ μ⎣ ⎦

 

 
6 62 2

– ,–

R R
t x y

R l R l

⎧ ⎛ ⎞μ μ⎪
× ⊗⎨ ⎜ ⎟

+ μ + μ⎝ ⎠⎪⎩

 



V.G. Gusev Vol. 21,  No. 5 /May  2008/ Atmos. Oceanic Opt.  397 
 

 

 
( )

( ) ( )2 2

6 6 0 6 6
2

exp , ,
2

ikR
x y P x y

l R l

⎫⎫⎡ ⎤⎪⎪⎢ ⎥⊗ + ⊗⎬⎬
⎢ ⎥+ μ ⎪⎪⎣ ⎦⎭⎭

 (16) 

where Ð0(õ6, ó6) is the Fourier transform of ð0(õ5, ó5) 

with the spatial frequencies x6/λf0 and y6/λf0. 
If the variation period of 1 + exp[ik (R + μ2l) a2/ 

/2μ2Rl] exp(–ik ax6/μl) is at least an order of 
magnitude larger than the width of Ð0(õ6, ó6), 
determining the size of subjective speckle in 
recording plane 3 (see Fig. 3), then take it out of the 
integral of convolution in Eq. (16). Then, using the 
integral convolution representation, write the light 
distribution in the plane (õ6, ó6) in the form 
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It follows from Eq. (17) that the interference 
pattern in the form of fringes, alternating on the x-
axis, is formed, modulating the subjective speckle 
structure, when imaging a hologram with the use of 
Kepler tube with spatial filtration of the diffraction 
field in its frequency plane. In this case, the fringe 
period Δõ6 = λμl/ a is independent of the curvature of 
a spherical wave of the coherent radiation, used to 
illuminate the scatterer while recording the hologram, 
and decreases with a decrease of the scale of the 
Fourier transform of the function, characterizing  
the complex amplitude of scatterer transmittance  

or reflection, in the hologram plane. Besides, if  
the diameters of the collimated beam, retrieving the 

hologram, and of the lens L 

′
0 (see Fig. 3) exceed D, 

then spatial extension of the recorded interference 
pattern is limited to the domain of existence of the 
Fourier transform of the function t(–õ1, –ó1).

8 
Note, that in case of interference pattern 

localization in the scatterer-imaging plane, the 

mechanism of its formation is defined by superposition 
of the two identical speckles of two exposures in the 
Fourier plane. In its turn, formation of the 
interference pattern, localized in the hologram plane, 
is defined by the presence of a slope angle of the 
subjective speckle-field, corresponding to the second 
exposure, with respect to those of the first exposure, 
in this plane.  

To analyze the behavior dynamics of the fringes, 
localized in the scatterer-imaging plane, consider the 
procedure of spatial filtration of the diffraction field 
in the hologram plane in Fig. 2 exterior to the optical 
axis, i.e., when the filtering aperture is centered at 
(x04, 0). Assume that the size of the subjective speckle 
in the hologram plane is much less than the diameter 
of filtering aperture, but the angle of slope of the 

subjective speckle, caused by diffraction of a plane 
wave, propagating at the angle õ04/μl with respect to 
the optical axis, is constant within the filtering 
aperture diameter. Then, with accounting for the above 
condition ([kax4/μl] ≤ π), define the distribution of the 

field complex amplitude at the spatial filter outlet as 
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As a result of the Fourier transform, this 

distribution in the far focal plane (õ5, ó5) of the lens 

L 

′
0 (see Fig. 2) takes the form 
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Then, with accounting for smallness of (Δ + μl2)a/μl 
and l2a/μl in comparison with (Δ + μl2)x04/μl and 
l2x04/μl, the light distribution in recording plane 3 
(see Fig. 2) is defined by the equation 
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It follows from Eq. (20) that when the filtering 
aperture is displaced on the x-axis with accounting 
for the above inequality, i.e., l2 < (Δ + μl2)/μ, the 
Galilean telescope pupil is displaced relative to  
static image of the scatterer; in addition, fringes are 
also displaced. In this case, while varying x04, the 

interference pattern phase changes by π when 

displacing the filtering aperture center, e.g., from a 
minimum of interference pattern, localized in the 
hologram plane, to its maximum (“living” fringes). 
  When spatial filtration of the diffraction field is 
carried out in the scatterer-imaging plane exterior to 
the optical axis, e.g., at the point (õ05, 0), at 
retrieving the double-exposure quasi-Fourier hologram, 
and the phase change [k(R + μ

2
l)ax5/μRl] ≤ π within 

the diameter of filtering aperture, the distribution of 
the field complex amplitude takes the form 
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After fulfillment of the Fourier transform, the 
field complex amplitude distribution in the far focal 

plane of the lens L 

′′
0  (see Fig. 3) is defined as 
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Based on Eq. (22) and with accounting for the integral 
convolution representation, the light distribution in 
recording plane 3 (see Fig. 3) takes the form  

 ( )6 6,I x y ∼  
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 (23) 

As follows from Eq. (23), when the filtering 
aperture is displaced along the x-axis, the interference 
pattern displaces relative to a fixed image. Besides, 
while varying õ05, the interference pattern phase 

changes by π when displacing the filtering aperture 
center, e.g., from a minimum of interference pattern, 
localized in the scatterer-imaging plane, to its 

maximum (“living” fringes). In addition, in case of 
the two-exposure recording of the Fourier hologram, 
“frozen” fringes are formed in their plane while 
reconstructing due to the absence of displacements of 
the subjective speckles, corresponding to the second 
exposure. 

A comparison of the considered holographic 
interferometer, used for controlling transversal 
displacement of the scatterer, with those using the 
Kepler tube1 shows that interference patterns are also 
localized in two planes, i.e., the hologram and Fourier 
ones. The behavior dynamics of fringes is similar 
when recording the interference patterns with spatial 
filtering of the diffraction field in the corresponding 
planes of their localization exterior the optical axis. 
However, in the interferometer, using the Galilean 
telescope, the interference pattern, localized in the 
scatterer-imaging plane, is formed in the Fourier 
plane and characterized by a nonlinear dependence  
of interferometer sensitivity on the telescope 

magnification at R ≠ ∞, as well as on the sign of 
curvature of a spherical wave of the coherent 
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radiation used to illuminate the scatterer. In its turn, 
the interferometer sensitivity to the interference 
pattern, localized in the hologram plane, depends on 
the hologram-plane scale of the Fourier transform of 
the function, characterizing the complex amplitude of 
scatterer transmittance or reflection, in this plane. 
  In the experiment, double-exposure holograms 
were recorded on Mikrat VRL photoplates by  
means of 0.6328 μm He–Ne laser radiation. The 
experimental technique consisted in comparison of 
the hologram records made with a Galilean telescope 

with the following parameters: f1 = 250 mm, 
f2 = 120 mm, d1 = 31 mm, d2 = 15 mm. For the fixed 
values of transversal scatterer: the displacement 

a = (0.025 ± 0.002) mm, distances l1 = 200 mm and 
l2 = 150 mm, curvature of a divergent spherical 
spatially restricted reference beam r = 258.5 mm 
with the angle θ = 12°, different curvatures of 
spherical waves front of the coherent radiation, used 
for opaque screen illumination, were chosen within a 
range 300 mm ≤ ⏐R⏐ ≤ ∞; a diameter of illuminated 
area was 40 mm.  

Figure 4 shows the interference patterns, localized 
in the Fourier plane, where the opaque screen is 

imaged, and the characterizing transversal 
displacement of the screen. The interference patterns 
were recorded in the lens focal plane with f 2 = 135 mm 
when spatial filtering the diffraction field in the 
hologram plane by means of its reconstruction with a 
small-aperture (≈ 2 mm) laser beam. 

 

 
 a b c 

Fig. 4. Interference patterns localized in the plane of 
scatterer imaging and characterizing its transversal 
displacement: the scatterer is illuminated by a collimated 
beam (a), radiation with divergent (b) and convergent (c) 
spherical waves. 

 
When recording the hologram, the scatterer was 

illuminated by a collimated beam (Fig. 4à), the 
coherent radiation with convergent (R = 500 mm, 
Fig. 4b) and divergent (R = 400 mm, Fig. 4c) 
spherical waves. The letter “T” was preliminary 
drawn on the opaque screen. In this case, the spatial 
extension s of interference patterns in the focal plane 

of the lens L0
′  was 9.6 mm, which agrees with the 

calculated value. 
The interference pattern, localized in the hologram 

plane, is shown in Fig. 5a. It was recorded at 
illuminating the hologram (see Fig. 3) by a collimated 
beam of 50 mm in diameter; spatial filtration of the 
diffraction field was carried out in the focal plane of 
the lens L0 of 60 mm in diameter and 500 mm in 
focal length. In this case, spatial extension of the 
interference pattern was 43 mm and corresponded to 

the calculated value D with accounting for a factor 
of 1.22. In addition, there was no need in spatial 
filtration of the diffraction field in the frequency 
plane of two-component optical system in Fig. 3 in 
case of the Fourier hologram recording. 

 

 
 a b 

Fig. 5. Interference patterns localized in the hologram plane 
and characterizing transversal (a) and longitudinal (b) 
displacement of the scatterer. 

 

The periods of the fringes, localized both in the 
Fourier and hologram planes, were calculated for the 
known variables λ, a, μ, l, R, and f0 and compared 
with measurement results. They agreed to each other 
up to 10% error, allowable in the experiment. 

Let opaque screen 1 be z-axial displaced to 
Δl << l1, R before the second exposure of photoplate 2 
(see Fig. 1). Then define the distribution of the field 
complex amplitude, corresponding to the second 
exposure, in the object channel in the photoplate 
plane (to the used approximation) as 
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  (24) 

which while fulfilling the transforms, known in the 
Fourier optics, takes the following form: 

 ( ) ( ) ( )2 2

2 4 4 4 4

2

, exp exp
2

ik
u x y ik l x y

l

⎡ ⎤
Δ + ×⎢ ⎥

⎣ ⎦
∼  

 ( ) ( )
2

2 2 2 21 1 2

4 4 4 42 2 2

2 2

exp exp
2 2

ikL ikL L
x y x y

l l

⎧ ⎧ ⎡ ⎤′⎡ ⎤⎪ ⎪
× − + − + ×⎨ ⎨ ⎢ ⎥⎢ ⎥

Δ⎪⎣ ⎦ ⎣ ⎦⎪ ⎩⎩
 

 ( )
( )

( )( )
( )1 2 2

1 1 1 1

1

, exp
2

ik R l
t x y x y

R l l l

∞

−∞

⎡ ⎤+
× + ×⎢ ⎥

− Δ + Δ⎢ ⎥⎣ ⎦
∫ ∫  



400   Atmos. Oceanic Opt.  /May  2008/  Vol. 21,  No. 5 V.G. Gusev 
 

 

( )
( )

( )
( )2 22 1 2

1 1 1 4 1 42

1 21
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ikL ikLL
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l l ll l
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where 
2

2 1 1 1(1/ ) 1/( ) –1/ 1/ – /L l l f L′ = + Δ + Δ Δ  is the 

notation, introduced for brevity. 

Since L1 = l2Δ/(Δ + μl2) and L2
′  = (l1 + Δl)(Δ + μl2)/ 

/μ(l + Δl/μ
2), then after calculating Eq. (25) with 

accounting for the conditions used in derivation of 
Eq. (4), the distribution of the field complex 

amplitude u2
′(õ4, ó4) within the above area in the 

plane of a photoplate of D in diameter takes the form 
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where F′(õ4, ó4) is the Fourier transform of t(õ1, ó1)  
with the spatial frequencies x4/λμl (1 + Δl/μ2l) and 
y4/λμl (1 + Δl/μ2l). 

If the quasi-Fourier or Fourier hologram is 
double-exposure recording with a divergent spherical 
reference wave with the curvature r = l on the linear 
part of the photomaterial blackening curve, the 

distribution of the complex amplitude of the hologram 
transmittance, corresponding to the (–1)-st diffraction 
order, on the base of Eqs. (4) and (26) takes the form 
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It follows from Eq. (27) that an inhomogeneous 
(radially varying from the optical axis) displacement 
of the subjective speckles, corresponding to the 
second exposure, with respect to the similar10 speckles 
of the first exposure takes place in the hologram 
plane due to the difference in the scales of Fourier 
transforms F(õ4, ó4) and F′(õ4, ó4). This displacement 
is independent of the curvature R of a spherical wave 
of the coherent radiation used for scatterer illumination 
while recording the hologram. At the same time, the 

exponential factor 
( )2 2

4 4

2 2
exp

2

ik l x y

l

⎡ ⎤− Δ +
⎢ ⎥
⎢ ⎥μ
⎣ ⎦

 indicates the 

presence of a slope, radially varying from the optical 
axis, of subjective speckles, corresponding to the 
second exposure; the slope is also R-independent. The 
orientation character of the subjective speckles, 
corresponding to the second exposure, is so that there 
is an additional radial variation of the slope from  
the optical axes, which is caused in Eq. (27) by  

the factor 

( )( )
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2 2

4 42 2 2
exp

2

ik R l l l
x y

R l l

⎡ ⎤− Δ μ + Δ
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 under 

the convolution integral. This variation depends on 
the curvature of a spherical wave of the coherent 
radiation used for scatterer illumination.  

Let spatial filtration of the diffraction field be 
carried out in the hologram plane on the optical axis 
when reconstructing the double-exposure hologram, 
characterizing longitudinal displacement of the 
scatterer (Fig. 2). Let also the Fourier transforms 
F(õ4, ó4) and F′(õ4, ó4) of the function t(õ1, ó1) be 
similar within the diameter df of the filtering 
aperture, which is in this case to satisfy the condition 

( )≤ λμ Δ + μ Δ2

2 1f /d l l d l . Besides, if the phase change 

( )2 2 2 2

4 4 /2k l x y lΔ + μ  does not exceed π within the 

diameter of the filtering aperture, then the distribution 
of the field complex aperture at the outlet of the 
spatial filter p0 (see Fig. 2) takes the form 
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Based on Eq. (28), the distribution of the field 
complex aperture in recording plane 3 (see Fig. 2) 
after the Fourier transform is defined by the equation 
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If the variation period of 1 + exp(ikΔl) × 
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 is at least one order 

of magnitude larger than the width of the function 
P0(õ5, ó5), then take it out of the convolution 
integral in Eq. (29), and the light distribution in the 
plane (õ5, ó5) with accounting for the inequality 
l2 < (Δ + μl2)/μ takes the form 
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According to Eq. (30), a subjective speckle 
structure in the plane of scatterer imaging, restricted 
to the image of Galilean telescope pupil, is modulated 
by fringes of equal slope – the system of concentric 
interference rings. The measurement of their radii r1 
and r2 in the neighboring interference orders allows 
determination of the longitudinal scatterer 

displacement ( )( )2 2 2 2 4 2 2 2

0 2 12 /l R f R l r rΔ = λμ − μ −  for 

the known variables λ, μ, R, l, and f0. The 
interferometer sensitivity in this case depends on the 
curvature of the spherical wave front of the coherent 
radiation, used for scatterer illumination while 
recording the hologram. Thus, when ⏐R⏐ decreases 
within a range μ2l ≤ ⏐R⏐ ≤ ∞, the interferometer 
sensitivity decreases down to zero when ⏐R⏐ = μ2l. In 
this case, an additional slope of subjective speckles, 
corresponding to the second exposure, with respect to 
the similar ones of the first exposure in the hologram 
plane is radially invariable from the optical axis in 
Eq. (26). A further decrease of the spherical wave 
curvature results in enhancement of the interferometer 
sensitivity when recording the interference pattern, 
localized in the scatterer-imaging plane, due to 
occurrence and an increase of a slope, radially varied 
from the optical axis, of the subjective speckles, 
corresponding to the second exposure, in the 
hologram plane. 

Consider the spatial filtration of the diffraction 
field on the optical axis in the scatterer-imaging 
plane (õ5, ó5) (Fig. 3) at the stage of recording  
of the double-exposure quasi-Fourier hologram, 
characterizing longitudinal scatterer displacement. In 
this case, neglecting the spatial boundedness of the 
field due to finite sizes of the hologram and the lens 

L0
′ , the distribution of its complex amplitude in the 

above plane is defined as  
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Knowing that ( )⎡ ⎤μ + Δ ≅⎣ ⎦
2 2 2 2 2

5 5 01exp /2ik l x y f l  
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5 5l x y ⎤μ ≤ π⎦
2 2 2

0/2 R f   within the diameter of 

the filtering aperture of the spatial filter p0 (Fig. 3). 

Besides, ( )≤ λμ Δ + μ Δ2
2 1f / ,d l l d l  if f0 = μl; when 

f0 ≠ μl, it is necessary to take into account the factor 
f0/μl. Hence, the distribution of the field complex 
amplitude at the spatial filter outlet takes the form 
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On the base of Eq. (32) after fulfillment of the 
Fourier transform, the distribution of the field complex 
amplitude in the plane (õ6, ó6) (Fig. 3) is defined as 
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If the variation period of 1 + exp(ikΔl)× 

( )2 2

6 62 2
exp –

2

⎡ ⎤Δ
× +⎢ ⎥μ⎣ ⎦

ik l
x y

l
 is at least one order of 

magnitude larger than the width of P0(õ6, ó6), defining 
the size of subjective speckle in recording plane 3 
(Fig. 3), then we take it out of the convolution 
integral in Eq. (33), and the light distribution in the 
plane (õ6, ó6) takes the form 
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2

0 6 6, .P x y⊗  (34) 

According to Eq. (33), a subjective speckle 
structure in the hologram plane is modulated by fringes 
of equal slope – the system of concentric interference 
rings. Measurement of their radii in the neighboring 
interference orders allows determination of the 

longitudinal scatterer displacement for the known 
variables λ, μ, and l. In this case, the interferometer 
sensitivity depends on the scale of Fourier-transform 
function, characterizing the complex amplitude of 
scatterer transmittance or reflection, in the plane of 
photoplate 2 (see Fig. 1). Besides, if diameters of a 
collimated beam of the coherent radiation, 

reconstructing the hologram, and of the lens L 

′
0 

(Fig. 3), exceed D, the spatial extension of the 
recorded interference pattern is limited to the domain 
of existence of the Fourier transform of t(–õ1, –ó1) in 
the hologram plane. 

Note, that in case of localization of the 

interference pattern, characterizing longitudinal 
scatterer displacement, in the hologram plane, the 
mechanism of its formation is caused by the presence 
of a slope angle of the subjective speckle-field, 
corresponding to the second exposure, with respect to 
the field of the first exposure in the hologram plane. 
The angle varies radially from the optical axis and is 
independent of the curvature of a spherical wave of 
the coherent radiation, used for scatterer illumination. 
In its turn, the orientation character of the subjective 
speckles, corresponding to the second exposure and 
correlated with variations of the slope angle, depending 
on the curvature of a spherical wave of the coherent 
radiation, used for scatterer illumination, governs the 

localization of the interference pattern in the scatterer-
imaging plane.  

To analyze the behavior dynamics of the fringes, 
localized in the scatterer-imaging plane and 

characterizing longitudinal displacement of the 
scatterer, consider spatial filtration of the diffraction 
field in the hologram plane exterior the optical axis 
(Fig. 2), i.e., the case when the filtering aperture is 
centered at (x04, 0). As in the case of transversal 
scatterer displacement, assume that the size of a 
subjective speckle in the hologram plane is much less 
then the filtering aperture diameter, but within the 
latter, the angle of slope of the subjective speckle, 
caused by the diffraction of a plane wave, propagating 
at the x04/μl angle to the optical axis, is invariable. 

In addition, the phase change ( )⎡ ⎤Δ + μ ≤ π⎣ ⎦
2 2 2 2

4 4 /2k l x y l  

within the filtering aperture diameter 

( )≤ λμ Δ + μ Δ2

2 1f / .d l l d l  Then define the distribution 

of the field complex amplitude at the spatial filter 
outlet as 

 ( ) ( ) ( )4 4 0 4 4 4 04 4, , ,u x y p x y F x x y
⎧
⎪

′ + ⊗⎨
⎪⎩

∼
 

 
( )

( )
2 2

4 04 4
2

exp
2

ikR
x x y

l R l

⎧ ⎫⎪ ⎪⎡ ⎤⊗ − + + ⊗⎨ ⎬⎣ ⎦+ μ⎪ ⎪⎩ ⎭

 

 ( ) ( )04 4 04 4

1 4 4 2 4 4exp , exp ,
ikx x ikx x

P x y P x y
l l

⎛ ⎞ ⎛ ⎞
⊗ − ⊗ − +⎜ ⎟ ⎜ ⎟μ μ⎝ ⎠ ⎝ ⎠

 

( ) ( )
2

04 1 04

1 12 2 3 2
exp exp , exp

2

ik lx ik lx x
ik l t x y

l l

∞

−∞

⎧⎛ ⎞ ⎛ ⎞Δ Δ⎪
+ Δ − × ×⎜ ⎟ ⎨ ⎜ ⎟

μ μ⎝ ⎠⎝ ⎠ ⎪⎩
∫ ∫

 

 
( )1 4 04 1 4

1 1exp
ik x x x y y

dx dy
l

⎧ ⎫+ +⎡ ⎤⎪ ⎪⎣ ⎦× − ⊗⎨ ⎬
μ⎪ ⎪⎩ ⎭

 

 
( )( )
( )

( )
2

2 2

4 04 4
2 2 2

exp
2

ik R l l l
x x y

R l l

⎧ ⎫− Δ μ + Δ⎪ ⎪⎡ ⎤⊗ − + + ⊗⎨ ⎬⎣ ⎦+ μ μ⎪ ⎪⎩ ⎭

 

 ( )04 4

1 4 4exp ,
ikx x

P x y
l

⎛ ⎞
⊗ − ⊗⎜ ⎟μ⎝ ⎠

 

 ( )04 4

2 4 4exp – , .
ikx x

P x y
l

⎫⎫⎛ ⎞ ⎪⎪
⊗ ⎬⎬⎜ ⎟μ ⎪⎝ ⎠ ⎪⎭⎭

 (35) 

After fulfillment of the Fourier transform, the 
distribution of the field complex amplitude in the far 

focal plane L 

′
0 (see Fig. 2) takes the form 
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  (36) 

On the base of Eq. (36) and with accounting for the 
inequality l2 

< (Δ + μl2)/μ, define the light distribution 
in recording plane 3 (see Fig. 2) as  
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As follows from Eq. (37), when the filtering 
aperture is displaced on the x-axis, an image of the 
Galilean telescope pupil displaces in respect to a 
relatively immovable scatterer image. Fringes also 
displace due to an inhomogeneous displacement of 
the subjective speckles, corresponding to the second 
exposure, in the hologram plane (fringe parallax). In 
this case, while varying õ04, the interference pattern 
phase changes when displacing the filtering aperture 
center, e.g., from a minimum of interference pattern, 
localized in the hologram plane, to its maximum 
(“living” fringes).  

When spatial filtration of the diffraction field  
is carried out in the scatterer-imaging plane  
exterior the optical axis in Fig. 3, e.g., at the point 
(õ05, 0), while reconstructing the double-exposure 

quasi-Fourier hologram, and the phase change 

⎡ ⎤− μ Δ + μ ≤ π⎣ ⎦
2 4 2 2 2 2 2 2

5 5 0( ) ( )/2k R l l x y R f  within the 

diameter of filtering aperture, the distribution of the 
field complex amplitude at the spatial filter outlet is 
defined as 
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 (38) 

If ( )≤ λμ Δ + μ Δ2

2 1f /d l l d l  (f0 = μl), then 

 

( )

( )

5 05 52 2
0 0

5 05 5

0 0

– 1 ,– 1

– ,–

l l l l
t x x y

f fl l

l x x ly
t

f f

⎡ ⎤⎛ ⎞ ⎛ ⎞μ Δ μ Δ
+ + + =⎢ ⎥⎜ ⎟ ⎜ ⎟
μ μ⎝ ⎠ ⎝ ⎠⎣ ⎦

μ +⎡ ⎤μ
= ⎢ ⎥

⎣ ⎦

 

in Eq. (38) and subjective speckles of two exposures 
at the spatial filter outlet are identical. Again, the 
distribution of the field complex amplitude in the far 

focal plane of the lens L 

′′
0  (see Fig. 3) takes the form 
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on the base of which the light distribution in 
recording plane 3 (see Fig. 3) is defined as 
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  (40) 

According to Eq. (40), when the filtering aperture 
is displaced along the x-axis, the fringes displace 
with respect to a relatively immovable hologram 

image due to an inhomogeneous displacement of the 
subjective speckles, corresponding to the second 

exposure, in a direction, depending on the direction 
of filtering aperture displacement (fringe parallax). 
In this case, while varying õ05, the interference pattern 
phase changes when displacing the filtering aperture 
center, e.g., from the minimum of interference pattern, 
localized in the scatterer-imaging plane, to its 

maximum (“living” fringes). 
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When the interference pattern, characterizing 
longitudinal scatterer displacement, is localized in 
the Fourier plane, spatial filtration of the diffraction 
field in the scatterer-imaging plane is required to 
record this interference pattern. In this case, when 
displacing the filtering aperture, as in the case of single-
component optical system for recording the Fourier 

hologram,11,12 the only fringe parallax takes place due 

to a similar mechanism of interference pattern formation, 
connected with accounting for an inhomogeneous 

displacement of the subjective speckles, corresponding 
to the second exposure, in the hologram plane. 

Comparison of the considered holographic 

interferometer, used for controlling transversal 
displacement of the scatterer, with those using the 
Kepler tube1 shows that interference patterns are also 
localized in two planes, i.e., the hologram and 
Fourier ones. In the interferometer, using the Galilean 

telescope, the interference pattern, localized in the 
scatterer-imaging plane, is formed in the Fourier 
plane; at R ≠ ∞ it has other character of the 
sensitivity dependence on the telescope magnification. 
In its turn, the interferometer sensitivity for the 
interference pattern, localized in the hologram plane, 
depends on the hologram-plane scale of the Fourier 
transform of the function, characterized the complex 
amplitude of scatterer transmittance or reflection. 
Besides, when using the Galilean telescope to control 
longitudinal displacement of the scatterer, the fringe 
parallax is characteristic when recording the 

interference patterns with spatial filtration of the 
diffraction field exterior the optical axis in the 
corresponding planes of their localization. 

In the experiment, double-exposure holograms 
were recorded for the fixed longitudinal displacement 
Δl = (0 ± 0.002) mm of the opaque screen for different 
curvatures of a spherical wave front of the radiation, 
used for scatterer illumination, chosen within the 

above range. The l1 and l2 values corresponded to the 
above presented. As an example, the interference 
patterns, localized in the imaging plane of the opaque 
screen, restricted by an image of the telescope pupil, 
are given in Fig. 6.  

 

 
 a b 

Fig. 6. Interference patterns localized in the scatterer-
imaging plane and characterizing its longitudinal 
displacement in illuminating by radiation with divergent (à) 
and convergent (b) spherical waves. 

 
They were recorded in the focal plane of a lens 

with f0 = 135 mm in focal length when spatial filtering 
the diffraction field in the hologram plane by means 
of its retrieving with a small-aperture (≈ 2 mm) laser 

beam. Figure 6a corresponds to the case of screen 
illumination by radiation with a divergent spherical 
wave (R = 400 mm) while Figure 6b is to the case of 
the convergent one (R = 300 mm). If the spherical 
wave radius satisfies the condition 780 mm ≤ ⏐R⏐ ≤ ∞, 
the zero order of interference exceeds s = 9.6 mm. 

The interference pattern, localized in the 
hologram plane (see Fig. 5b), was recorded while 
reconstructing the hologram (Fig. 3) by a collimated 
beam of 50 mm in diameter with spatial filtration of 

the diffraction field in the focal plane of the lens L′0 
of 60 mm in diameter and 500 mm in focal length. In 
this case, the spatial extension of the interference 
pattern was equal to a calculated value of 43 mm. In 
addition, to retrieve the above interference pattern in 
case of recording the Fourier hologram at the stage of 
its retrieving, spatial filtration of the diffraction field 
in the frequency plane of the two-component optical 
system (Fig. 3) was necessary. 

The value of the opaque screen longitudinal 
displacement was calculated for the known variables 
λ, μ, l, R, f0, r1, and r2 for both the described and 
other interference patterns, recorded in the experiment; 
then it was compared with the known value. They 
agreed to each other up to 10% error, allowable in 
the experiment. 

While two-exposure recording of the quasi-Fourier 
and Fourier holograms with a Galilean telescope to 
control transversal or longitudinal displacement of the 

scatterer the character of the interferometer sensitivity 
dependence on the enhancement of the Kepler tube 
sensitivity is different.1 Hence, an analysis of the 
hologram recording according to Fig. 7, when the 
scatterer is in front of the telescope lens, is required. 
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Fig. 7. Schematic view of two-exposure hologram recording. 

 
In this case, the distribution of the complex 

amplitude of the field, corresponding to the first 
exposure, to the Fresnel approximation in the object 
channel in the photoplate plane is  
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  (41) 

where l 

′
1 is the distance between the opaque screen 

and the principal plane of the lens L2; l 

′
2 is the 

distance between the principal plane of the lens L1 
and the photoplate. 

Based on the transforms, similar to those fulfilled 
in case when the scatterer was placed in front of the 
Galilean telescope lens, obtain the distribution of the 
field complex amplitude in the photoplate plane 
within the area of ( )2 2 /D d l l′ ′ ′≤ + μΔ ( )′ ′μ + Δ1 2l l l  in 

diameter ( ′ ′ ′= + μΔ + μ
2

2 1l l l ) in the following form: 
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where r′ = l′ is the curvature of a divergent spherical 

wave; ( )4 4,F x y�

 is the Fourier transform of the 

function t(õ1, ó1) with the spatial frequencies μx4/λl′ 

and μy4/λl′; P1
′(õ4, ó4) is the Fourier transform of the 

telescope objective pupil function p1(õ3, ó3) with the 

spatial frequencies x4/λl2′ and y4/λl2′ ; P2
′(õ4, ó4) is 

the Fourier transform of the telescope lens pupil 
function p2(õ2, ó2) with the spatial frequencies 

′μ λ μΔ +4 2/ ( )x l  and 4 2/ ( ).y l′μ λ μΔ +  

It follows from Eq. (42), that the quasi-Fourier 
transform of the transmission function of opaque 
screen 1 is formed in the plane of photoplate 2 
(Fig. 7) within the area of D′ in diameter, each point 
of which is extended up to the size of the subjective 
speckle, defined by the width of the function  

P1
′(õ4, ó4) ⊗ P2

′(õ4, ó4). In this case, the subjective 
speckle-field is superimposed with the phase 
distribution of a divergent spherical wave with the 
curvature r′ = l′. In particular case of the scatterer 
illumination with a coherent radiation with a 
convergent spherical wave of l′/μ2 in curvature, the 
distribution of field complex amplitude in the plane 
(õ4, ó4) corresponds to the Fourier transform of the 
function t(õ1, ó1). 

When the opaque screen is transversely displaced 
in its plane toward the x-axis to a, the distribution 
of the complex amplitude of the field, corresponding 
to the second exposure, in the object channel in the 
photoplate plane within the above area is defined as 
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  (43) 

According to Eq. (43), the transversal displacement 
of the scatterer is accompanied by variation of the 
slope angle of subjective speckle-field to the value 
μa/l′ with respect to the speckle-field of the first 

exposure. In addition, a homogeneous displacement of 
the speckle-field component is observed there, caused 
by the diffraction of a plane wave on the pupil of 
Galilean telescope, to (μ2R + l′)a/μR. 

If the double-exposure quasi-Fourier or Fourier 
hologram is recorded at the linear part of the photo-
material blackening curve with the use of a divergent 
spherical wave of r′ = l′ in curvature, then the 

distribution of the complex amplitude of its 

transmittance, corresponding to the (–1)-st diffraction 
order, on the base of Eqs. (42) and (43) takes the form 
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  (44) 

If the diffraction field is spatially filtered while 
reconstructing the hologram in its plane on the 
optical axis (Fig. 2), and the phase change 
(kμax4/l′) ≤ π within the diameter of filtering aperture, 
then define the distribution of the field complex 
amplitude in the far focal plane of the lens L0 as 

 ( )
( ) ( )2 2 2

5 5 5

0

, 1 cos
2

k R l a k R l
I x y ax

Rl Rf

⎧ ⎫⎛ ⎞′ ′μ + μ +⎪ ⎪⎜ ⎟+ + ×⎨ ⎬′⎜ ⎟μ⎪ ⎪⎝ ⎠⎩ ⎭

�
∼  

 2 2 2 2

1 5 5 2 5 5

0 0 0 0

, ,

l l l l
p x y p x y

f f f f

′ ′ ′ ′⎛ ⎞ ⎛ ⎞+ μΔ + μΔ
× ×⎜ ⎟ ⎜ ⎟

μ μ⎝ ⎠ ⎝ ⎠
 



406   Atmos. Oceanic Opt.  /May  2008/  Vol. 21,  No. 5 V.G. Gusev 
 

 

 
( )

( )
2

2 2

5 5 5 52 2
0 0 0

– , exp
2

ikl R ll l
t x y x y

f f Rf

⎡ ⎤′ ′μ +′ ′⎛ ⎞ ⎢ ⎥× − + ⊗⎜ ⎟
μ μ ⎢ ⎥μ⎝ ⎠ ⎣ ⎦

 

 ( )

2

0 5 5, .P x y⊗  (45) 

It follows from Eq. (45) that to provide for the 
diffraction boundedness of the field by a telescope, 

the diameter D 

′
0 of the illuminated area of the 

scatterer at the stage of hologram recording should 
satisfy the condition 0 2 2/( ).D d l l′ ′ ′≥ + μΔ  Then the 

subjective speckle structure is modulated by fringes, 
alternate on the x-axis, within the area 

2 0 2/( )s d f l′ ′= μ + μΔ  of a telescope pupil image (here 

′ ′< μΔ +2 2( )l l ). In this case, the interferometer 

sensitivity depends both on the value and sign of the 
curvature of wave front of the coherent radiation, 
illuminating the scatterer while recording the 

hologram, due to a homogeneous displacement of the 
subjective speckle component, caused by the 

diffraction of a plane wave on the telescope pupil, in 
the hologram plane. The fringe period 

2

5 0/( )x Rf R l a′Δ = λμ μ +�  for positive R decreases with 

R due to the increase of the displacement of the 
above component of the subjective speckle, corresponded 
to the second exposure, in the hologram plane.  

When the opaque screen 1 (Fig. 7) is illuminated 
with a coherent radiation with a convergent spherical 
wave, the fringe period increases with decreasing R 

in a range 
2( / )l R′ μ ≤ ≤ ∞  up to infinity when 

R = l′/μ2; the Fourier transform of t(õ1, ó1) is 
formed in the hologram plane; displacement of the 
speckles, corresponding to the second exposure, is 
absent. A further decrease of R results in enhancement 
of the interferometer sensitivity when recording the 
interference pattern, localized in the scatterer-imaging 
plane, due to occurrence and increase of a homogeneous 
displacement of the subjective speckle component, 
caused by the diffraction of a plane wave on the pupil 
of Galilean telescope, in the hologram plane. In contrast 
to Ref. 1, the interferometer sensitivity nonlinearly 
depends on the telescope magnification at R ≠ ∞. 
  Let the spatial filtration of the diffraction field 
be performed on the optical axis in the scatterer-
imaging plane (Fig. 3) when reconstructing the 

double-exposure quasi-Fourier hologram (phase change 
2

0( ) / ),k R l a Rf⎡ ⎤′μ + μ ≤ π⎣ ⎦ within the diameter of 

filtering aperture). Then the light distribution in the 
plane (õ6, ó6) of the hologram imaging with the unity 
magnification takes the form  
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  (46) 

It follows from Eq. (46) that the subjective 
speckle-structure in the hologram-imaging plane is 

modulated with fringes of ′Δ = λ μ�

6 /x l a  in period. 

The fringe frequency depends on the hologram-plane 
scale of the Fourier transform of the function, 
characterizing the complex amplitude of scatterer 
transmittance or reflection. 

Under control of longitudinal displacement of 
the opaque screen 1 (Fig. 7) in two-exposure hologram 
recording, the distribution of complex amplitude of 
the field, corresponding to the second exposure, in 
the object channel in the photoplate plane within an 
area of D′ in diameter is defined as 

 ( )2 4 4,u x y′� ∼  
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where ( )4 4,F x y′
�

 is the Fourier transform of the 

function t(õ1, ó1) with the spatial frequencies μx4/ 
/λl′(1 + μ2Δl/l′) and μó4/λl′(1 + μ2Δl/l′). 

If the double-exposure hologram is recorded at 
the linear part of the photo-material blackening curve 
with the use of a divergent spherical wave of r′ = l′ 
in curvature, then the distribution of the complex 
amplitude of its transmittance, corresponding to  
the (–1)-st diffraction order, on the base of 
equations (42) and (47) takes the form 
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 (48) 

Let the spatial filtration of the diffraction field 
be performed on the optical axis in the hologram plane 

(Fig. 2) while retrieving the double-exposure hologram 

(phase change ⎡ ⎤′μ Δ + ≤ π⎣ ⎦
2 2 2 2

4 4( )/2k l x y l  within the 

filtering aperture diameter ′ ′≤ λ + μΔ μ Δ�
3

2 2f ( )/ )d l l d l ). 
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Then define the light distribution in recording  
plane 3 (Fig. 2) with accounting for the inequality 

2 2( )l l′ ′< μΔ +  as 
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According to Eq. (49), a subjective speckle 
structure in the plane (õ5, ó5) of scatterer imaging, 
restricted by the image of Galilean telescope pupil, is 
modulated by fringes of equal slope – the system of 
concentric interference rings. In this case, the 
interferometer sensitivity is independent of the sign 
of a spherical wave curvature of the coherent radiation, 
used for scatterer illumination while recording the 
hologram, and has another character of the telescope 
magnification dependence in comparison with Ref. 1 
at R ≠ ∞. In addition, the interferometer sensitivity 
depends on the value of curvature R. Thus, when 
⏐R⏐ decreases within a range (l′/μ2) ≤ ⏐R⏐ ≤ ∞, the 
interferometer sensitivity decreases down to zero at 
⏐R⏐ = l′/μ2. In this case, an additional slope of the 
subjective speckles, corresponding to the second 
exposure, in the hologram plane is invariable in 
Eq. (47) with respect to the similar ones of the first 
exposure. A further decrease of the spherical wave 
curvature results in enhancement of the interferometer 
sensitivity when recording the interference pattern, 
localized in the scatterer-imaging plane, due to 

occurrence and increase of a slope angle, radially 
varied from the optical axis, of the subjective speckles, 
corresponding to the second exposure, in the hologram 
plane. 

In its turn, in case of double-exposure hologram 
retrievement with the spatial filtration of the 

diffraction field on the optical axis in the scatterer-
imaging plane (Fig. 3) (phase change 

⎡ ⎤′μ − + μ ≤ π⎣ ⎦
4 2 2 2 2 2 2 2

5 5 0( )( )/2k R l x y R f  within the 

diameter of filtering aperture and the diameter 

′ ′≤ λ + μΔ μ Δ�
3

2 2f ( )/ ,d l l d l  when f01 = l′/μ), the light 

distribution in the recording plane 3 (Fig. 3) takes 
the form 
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  (50) 

According to Eq. (50), a subjective speckle 
structure in the plane (õ6, ó6) of hologram imaging is 

modulated by fringes of equal slope – the system of 
concentric interference rings. In this case, the 

interferometer sensitivity depends on the hologram-
plane scale of the Fourier transform of the function, 
characterizing the complex amplitude of scatterer 
transmittance and reflection, and increases with a 
decrease of the scale of Fourier transform 4 4( , ).F x y�  

  Note, that in case of double-exposure recording 
of quasi-Fourier and Fourier holograms according to 
Fig. 7, the analysis of behavior dynamics of fringes in 
spatial filtering of the diffraction field exterior the 
optical axis gives results, similar to the case of 
hologram recording (Fig. 1).  

In the experiment, double-exposure quasi-Fourier 
and Fourier holograms were recorded according to 
the scheme in Fig. 7 with the above parameters of 
Galilean telescope; distances l1 and l2 equaled to 

150 and 200 mm, respectively, the curvature r′ of a 
divergent spherical spatially restricted reference beam 
was 1122 mm. The opaque screen was longitudinally 
or transversely displaced before the second exposure 
by the same length as in case of hologram recording 
according to Fig. 1. In addition, the interference 
patterns, localized in the Fourier and hologram planes, 
were recorded similarly.  

As an example, the interference patterns, localized 
in the Fourier plane and characterizing transversal 
displacement of opaque screen 1 (Fg. 7) are shown in 
Fig. 8. 

 

 
 a b c 

Fig. 8. Interference patterns localized in the plane of 
scatterer imaging and characterizing its transversal 
displacement under illuminating by a collimated beam (a), 
coherent radiation with divergent (b) and convergent (c) 
spherical waves (R = 500 mm). 

 

The image of the opaque screen is restricted to the 

image of Galilean telescope pupil, for which s′ = 9 mm 
corresponds to the calculated value. 

In the above three cases (Fig. 8) and in other 
ones, connected with variation of the value and sign 
of curvature of a spherical wave of the radiation, 
illuminating the scatterer, the fringe periods were 
calculated for the known variables λ, à, μ, l′, R, and 

f0 and compared with the measurement results. They 
agree to each other up to 10% error, allowable in the 
experiment. 

A special case is realized in the experiment at  

l 1
′ = l2, l 2

′ = l1, and, hence, l′ = μ2l and D′ ≅ D. As a 
result, the interference patterns, characterizing 
transversal or longitudinal displacement of the 
scatterer and localized in the hologram plane, were 
similar to those shown in Fig. 5. This also follows 
from Eqs. (17), (46) and (33), (50). 
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 a b 

Fig. 9. Interference patterns localized in the plane of 
scatterer imaging and characterizing its longitudinal 
displacement under illuminating by radiation with divergent 
(à) and convergent (b) spherical waves. 

 
The interference patterns in Fig. 9 characterize 

longitudinal displacement of opaque screen 1 (Fig. 7) 
and are localized in the Fourier plane; Figure 9a 
corresponds to the case when the scatterer is 
illuminated by the coherent radiation with divergent 
(R = 400 mm) and Fig. 9b – with convergent 
(R = 300 mm) spherical waves when recording the 
hologram. Both in these two cases and in others 
connected with variation of the value and sign of 
curvature of a spherical wave of the radiation, 
illuminating the scatterer when recording the 
hologram, the calculated value of longitudinal 
displacement of the opaque screen for the known 
λ, à, μ, l′, R, f0, r1, and r2 was compared with the 
known one. They agree to each other up to 10% 
error, allowable in the experiment. 

Note, that double-exposure quasi-Fourier 
hologram recording according to the scheme in Fig. 7 
at R = ∞ provides for the μ2-time enhancement of the 
interferometer sensitivity to the transversal scatterer 
displacement when recording the interference pattern, 
localized in the Fourier plane. This follows from 
comparison of Figs. 4a and 8a and Eqs. (12) and (45) 
and is explained by an increase of displacement of  
the subjective speckle component, caused by the 

diffraction of a plane wave on the pupil of Galilean 
telescope, in the hologram plane (see Eqs. (43) and 

(7)). Besides, the recording of the interference pattern, 
characterizing longitudinal scatterer displacement and 
localized in the Fourier plane, also provides for 
enhancement of the interferometer sensitivity at R = ∞. 
The μ4-time enhancement follows from comparison of 
Eqs. (49) and (30) and is explained by an increase of 
a slope angle, radially varied from the optical axis, of 
the subjective speckles, corresponding to the second 
exposure, with respect to the similar speckles of the 
first exposure. 

Thus, the results of theoretical analysis of 
formation of interference patterns, characterizing 

transversal or longitudinal displacement of the 

scatterer in double-exposure recording of the quasi-
Fourier and Fourier holograms with the use of a 
Galilean telescope along with performed experimental 
investigations have shown the following. 

Similar to the case of Kepler tube, interference 
patterns are localized in two planes. Under control of 
transversal scatterer displacement for the interference 
pattern, localized in the Fourier plane of scatterer 
imaging, the interferometer sensitivity generally 
nonlinearly depends on telescope magnification and 
the sign of curvature of a spherical wave of the 
coherent radiation, used for scatterer illumination 
when recording the quasi-Fourier hologram. 

For the interference pattern localized in the 
hologram plane, the interferometer sensitivity depends 
on the hologram-plane scale of the Fourier transform 
of the function, characterizing the complex amplitude 
of scatterer transmittance or reflection. 

Under control of longitudinal scatterer 

displacement for the interference pattern, localized in 
the Fourier plane, the interferometer sensitivity in 
general has another character of power dependence on 
telescope magnification in comparison with a Kepler 
tube. For the interference pattern localized in the 

hologram plane, the interferometer sensitivity depends 
on the hologram-plane scale of the Fourier transform 
of the function, characterizing the complex amplitude 
of scatterer transmittance or reflection. In addition, 
an inhomogeneous displacement of the subjective 
speckles, corresponding to the second exposure, in 
the hologram plane with respect to similar speckles 
of the first exposure results in a displacement of the 
interference pattern center (the system of concentric 
rings), localized in both the Fourier and hologram 
planes, when spatial filtering the diffraction field 
exterior the optical axis. Because of the same reason, 
spatial filtration of the diffraction field in the Fourier 
plane is necessary to record the interference pattern, 
localized in the hologram plane, in case of double-
exposure record of the Fourier hologram. 
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