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We present a development of the technique for solving problems connected with dynamics of 

the atmosphere and ocean, as well as with the control for environment. New elements are numerical 
algorithms for optimum estimations of the predicted characteristics with allowance for indeterminacy. 
The latter can be interpreted as errors of models, parameters, and input data. The indeterminacy 
functions are introduced into the simulation system explicitly. The idea of the proposed approach is 
based on a special organization of the variational principle for non-linear models of the studied processes, 
which are considered in the generalized variational formulation. For this purpose, the objective 
functional is supplemented with functionals, expressing the total measure of all indeterminacies and, 
given the observational data, the measure of differences between the measured values and their 
images calculated by the models. The structure of the computational technology, which uses the 
universal algorithm of direct-inverse simulation for realization of this technique, is described.  
The proposed algorithms are intended to improve the organization of adaptive (or directed) strategies 
of monitoring and optimal forecasting of changes in the atmosphere quality. 

 

Introduction 
 

The problem of estimating indeterminacy in 
mathematical models exists from the very moment of 
appearance of models themselves and the statement of 
the forecasting problem on their base. The sources of 
indeterminacies, which are always present in the 

models, are imperfect knowledge about the physical 
processes, errors in numerical schemes and algorithms 
of their realization, and errors in definition of input 
data. Observational data are the main source of 
information for solving the forecast problem and 
estimating the indeterminacies. In its turn, monitoring 
data on the behavior of the studied processes introduce 

other indeterminacies, connected with measurement 
errors and inaccuracy of the mathematical model, 
used for calculation of images of the observed values. 
  In recent years, different approaches to estimation 
of indeterminacies are actively developed and ways to 
attenuation of their influence on the forecasting quality 
are proposed. A significant part in these approaches 
is played by the methods of adjoint equations 

developed by G.I. Marchuk.1 As applied to models of 
the weather forecasting, the most progress was reached 
in the working out methods for improvement of the 

initial state of the predicted fields and formation of 
prognostic ensembles. Works on methods of the theory 
of sensitivity and assimilation of data for analysis of 
forecasting errors and formation of adaptive strategies 
of monitoring are activated. The descriptions of main 
approaches and the corresponding literature on the 
problem can be found in Refs. 2–7.  

In this paper, we present a new stage in our 
simulation technique.8–15 The idea of the proposed 
approach is based on a special organization of the 

variational principles for solving interconnected 

problems of ecology and climate on the base of non-
linear models of dynamics of the atmosphere, ocean, 
and environmental control. The models of the processes 
are considered in a generalized variational formulation, 
which explicitly and additively includes the functions 
of indeterminacies. The objective functional is 
supplemented with functionals, expressing the total 
measure of all indeterminacies and, provided the 
observation data are in hand, the estimate of 
differences between the measured values and their 
images calculated in terms of functions of state. 
Further, the extended functional is formed and the 
universal algorithm of the direct-inverse simulation is 
constructed on the variational principle, which includes 
algorithms for calculation of functions of sensitivity 
and indeterminacy of the corresponding objects. 

The optimal algorithms for forecasting and 

planning of the directed adaptive monitoring of 
evolution of natural processes are constructed by 
means of joint use of the basic and adjoint functions, 
as well as functions of indeterminacy and sensitivity. 
The indeterminacy functions introduce a regularization 
effect into the algorithms. When solving forecasting 
problems, assimilation of the observation data leads 
to the decrease of the degree of indeterminacy 
influence. If the domain of the model is insufficiently 
covered by observations from a stationary monitoring 
system, or if the observations are absent at all, then 
the indeterminacy functions can be used to identify 
the districts, where the stations of the adaptive 
(mobile) monitoring system should be located. 

High efficiency of mixed strategies for monitoring 
the composition of the atmosphere with the use of 
stationary observational programs and mobile monitoring 
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tools is proved by practice.16–20 The mobile tools are 
more adapted to the organization of the directed 
monitoring by given objective criteria. The presented 
algorithms are intended to perfect the organization of 
such mixed strategies. 

 

Problem statement 
 
Write the mathematical model of the spatial-

temporal evolution of the studied processes in the 
operator form 

 ( , ) ( , ) – – 0;
∂

≡ + =
∂

ϕ
ϕ ϕY Y f rL G

t
 (1) 

  = + ξ = = + ζ0 0

a afor 0; ,t Y Yϕ ϕ    (2) 

where ϕ ∈ Q(Dt) is the vector-function of the state; 
Y ∈ R(Dt) is the vector of parameters; G(ϕ, Y) is the 

spatial operator of the model; 

0,⎡ ⎤= × ⎣ ⎦tD D t  is the 

domain of variation of the spatial coordinates x and 
time t. The index a denotes the a priori estimates. 
Denote the set of the data measured in the set m

t tD D⊂  

by ϕm and Ψm and define the set of observation models 
to form images of the measured values in terms of 
functions of state 
 

 [ ( )] .
m m

H= +Ψ ϕ η  (3) 

Here []m denotes the operator of information transfer 

from the net h
t tD D⊂  to the set .

m

tD  Functions ,r  

,ξ  ,ζ  and η  describe indeterminacies and errors of 

the corresponding objects. When constructing 
algorithms, it is convenient to include into the vector 
of parameters both the internal characteristics of  
the model and sources, initial conditions, and 
indeterminacies of boundary conditions. 

Introduce a collection of objective and controlling 
functionals, necessary for solving problems on 

estimation of the quality of models, monitoring, 
ecological forecasting, and design. Use the functionals 
of the general form 

 ( )Φ = χ = χ∫( , ) ( , ) ( , ) d d , ,

t

k k k k k

D

F t D t FY Y xϕ ϕ  

 1, , 1k K K= ≥ , 

where ( , )ϕ YkF  are estimated functions and χk ≥ 0 

are weight functions. The choice of all objects in 
Eq. (4) is determined by aims of the study. The 
functions Fk(ϕ, Y) ∈ Q(Dt) are chosen to be bounded, 
Lipschitz-continuous, and Gateaux differentiable 
with respect to their functional arguments 

{ }( , ) ( ) ( ) .∈ ×ϕ Y t tQ D R D  The structure of the weight 

functions is defined by the following reasons. 
1. In Eq. (4), we choose χk(x, t) ∈ Q*(Dt), where 

Q*(Dt) is the function space dual to Q(Dt). These 
functions define Radon or Dirac measures χk(x, t) dDdt 
in Dt. The properties of the measures are discussed in 

detail in Ref. 21. For definiteness, we introduce the 
normalization conditions 

 χ = χ ≥∫ ( , )d d 1, 0.

t

k k

D

t D tx  (5) 

2. The estimation domain v

tD  of the function 

( , )kF Yϕ  is defined in tD  by supports of non-zero 

values χk ≥ 0. In particular, in problems of data 
assimilation the support of the function χk describes 
the scheme of observations, which are taken into 
account in the functionals, on .

v m

t t tD D D⊂ ⊂  

3. The range of χk values is given in such a way that 
the domain v

tD  is ranked by the contribution of the 

function Fk into the total value of the functional Φk. 

 

Indeterminacies in the models and data  

as a base for their unification  

 

To solve the problems, we use the variational 
principle. Define an extended functional 

 ( ) ( , , )
h
t

h h
k k

D
I

∗⎡ ⎤Φ = +⎣ ⎦Y� ϕ ϕ ϕ  
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Here Φk is the objective functional of the form (4), 
and the functional 

 ( )( , , ) ( , ), 0k kI L
∗ ∗

≡ =Y Yϕ ϕ ϕ ϕ   (7) 

presents the integral identity for description of the 

model in the variational formulation; αi ≥ 0, 0,4i =  are 

weight coefficients. The upper index h denotes the 
discrete analogs of the corresponding objects here and 
below. Let us define the last four functionals in 
Eq. (6) by scalar products of the energy type. 
Formula (4) describes the structure of all functionals 
in Eq. (6). Their individuality is expressed through 
specific assignment of the estimated and weight 
functions. The functional of the integral identity (7) 
is chosen so that the balance equation for full energy 
of the system (1) is obtained from Eq. (7) at ϕ* = ϕ. 
The observation part of the functional, containing the 
function η from Eq. (3), takes into account all 
available observational data for ϕm and ψm. 

The weight matrices Wi in functionals (6) are 
defined as follows: 

 , 1,4,
ii i WW W i= χ =�   (8) 

where iW�  are diagonal matrices defining the energy 

metric from the physical content of the corresponding 
functions; χWi 

are diagonal matrices, whose elements 

(6)

(4)
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represent the Radon and Dirac measures. They are of 
the same sense as the measures in the definition of 
the functionals (4). If the weight functions and 
measures are defined in such a way, all functionals for 

discrete and distributed characteristics are constructed 
by a common rule. This is important in construction 
and realization of adaptive algorithms, which are to 
operate in the regime of control for the spatial-
temporal dynamics of the supports of different 
information fields. 
 

The universal algorithm  
of the direct-inverse simulation 

 

Following to Refs. 11 and 12, we construct a 

scheme of the universal algorithm of direct-inverse 
simulation with a quantitative estimation of 
indeterminacy functions. Without going into details of 
the calculation technique, present only its main 
elements, which realize the stability conditions of the 
extended functional (6) with respect to variations of its 

functional arguments / 0∂Φ ∂ =�

h
s  

*( , , , , ).=ϕ ϕ ξ ζs r  

After making some transformations we obtain 
1) the system of fundamental equations: 

 ( , ) 0;
h

G
t

∂⎧ ⎫
+ − − =⎨ ⎬

∂⎩ ⎭
Y f r

ϕ
ϕ  (9) 

2) the system of adjoint equations: 

( ) ( )
**

* *

0 1 1, ( ) 0;

h

k H
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t

⎧ ⎫⎛ ⎞∂ ∂Φ ∂⎪ ⎪
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Y
ϕ
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  (10) 

 *( , ) 0;t =xϕ   (11) 

3) the system of equations for estimation of 
indeterminacies: 

 *

2 2 ( , ) 0,W tα − =r xϕ  (12) 

 *

3 3 ( ,0) 0,Wα − =xξ ϕ  (13) 

 4 4 0 0.

h h
k I

W
∂Φ ∂

α + α + =
∂ ∂Y Y

ζ   (14) 

In Eq. (10), A* is the adjoint operator to the 
Gateaux linearized operator of the model (1) in the 
discrete representation (9). The upper index “*” marks 

the adjoint (transposed) operators and functions from 
the dual space. In Eq. (14) we take into account only 
components of the sensitivity functions, which 
correspond to parameters with explicit allowance for 
indeterminacies in the functionals h

kΦ�  and 
.

h
I  After 

having solved the problems (9)–(14), we obtain the 
sensitivity relation  

 { }*

0
( , ) ( , ) ( , , )

=

∂
δΦ = Φ + δ + + δ ≡

∂
ϕ ϕ ϕ ϕY Y Y Y Y

h h h
k k k

a
a I a

a
 

 
, ,

h
k

⎛ ⎞∂Φ
≡ δ⎜ ⎟⎜ ⎟∂⎝ ⎠

Y
Y

 (15) 

where a is the real parameter; *

kϕ  is the solution of 

the problem (10) with the functional Φk. In contrast 
to Eq. (14), the sensitivity relation (15) takes into 
account all summands with variations of all 
characteristics related to the category of the model 
parameters. 
 

The feedback equations  
 
In practice, it is convenient to choose the objective 

functionals (4) as a sum of pairs of summands: 

 ( , ) ( ) ( ).k ks kpΦ =Φ +ΦY Yϕ ϕ  (16) 

In particular, the parametric part of the functional 
can be taken in the form 

 ( )
=

⎧⎪ ⎛Φ = γ Γ +⎨ ⎜
⎝⎪⎩

∑∫ �

2
(1)

1

1

( ) 0.5 grad –

t

N

i ikp ip

iD

Y YY   

 ( )
⎫⎪⎞+ γ Γ ⎬⎟
⎠⎪⎭

�

2 2
(2)

2 – d d .i iip Y Y D t  (17) 

Here iY
�  are values of the parameters calculated by 

the schemes of physical parameterization of the models 

(for instance, coefficients of turbulence by the 
Smagorinskii scheme); γ1, γ2 ≥ 0 are weight factors; 

( )
ip
α

Γ  are positive diagonal matrices of the scaling 

coefficients and weights, constructed by analogy with 
matrices (8); N is the total number of parameters.  
  Starting from the conditions of minimization for 
the objective functional and sensitivity relations,10 
we construct a system of feedback equations to refine 
the parameters: 

 1 ( , )
,i k

i

i

Y

t Y

−

∂ ∂Φ
= −κΓ

∂ ∂

Yϕ
 1, ;=i N  

 ( , )/ , ,
∂Φ ∂Φ⎛ ⎞

κ ≅ Φ ⎜ ⎟
∂ ∂⎝ ⎠

ϕ Y
Y Y

k k
k  

where κ is the iteration parameter; Γi is the matrix  
of formation of a metric in the space of parameters.  
If the objective functionals are chosen in the form 
(16), (17), the feedback equations have the following 
structure: 
 

 
*

1 ( , , )
– –−

⎧∂ ∂⎪
= κΓ γ⎨
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ϕ ϕY
h

i
i

i

Y I

t Y
 

 ( ) ( )(1) (2)
1 2– div grad – – .

⎫⎪
γ Γ + γ Γ ⎬

⎪⎭

� �

i i i iip ipY Y Y Y   (19) 

All numerical schemes for formation of problems 
(9)–(19) are generated by the variational principle 
for estimation of functional (6). The way, by which 
they are constructed, guarantees mutual agreement of 
all elements of the algorithm. In the general case, a 
set of problems (9)–(19) is solved by iteration methods. 
Functionals, included into Eq. (6), are approximated 

(18)
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by the decomposition and split methods. Equations (19) 
are also solved via split schemes, coordinated with 
the general structure of the algorithm. It should be 
noted that if the “windows” of data assimilation are 
taken equal to intervals of model discretization in time, 
direct algorithms for on-line solution of problems 
(9)–(19) can be obtained. Some modifications of such 
algorithms are described in Ref. 13. 

 

Algorithms for diagnostics  
of model quality and localization  

of mobile monitoring stations 
 

1. Adaptive monitoring strategy  
for reducing the indeterminacy in a forecast 

 
First, we consider the case when the interval 

[0, ]t  does not contain the data of a fixed system of 

observations {ψm}. Let us define a prognostic functional 
of type (4) in the estimation domain .

v

t
D  In fact, we 

put α0 = 1, α1 = 0 in Eq. (6); take Fk in the form 

 ( ) ( )( )= − −
a a

( , ) 0.5k kF WYϕ ϕ ϕ ϕ ϕ  (20) 

and ( , ) 0k tχ >x  for ( , ) ,vtt D∈x  where 
a
( , )txϕ  is a given 

a priori estimate of the unknown function of state in 
;

v

tD  Wk is a weight diagonal matrix. Its elements 

define the scale factors in formula (20), which describes 
the energy of perturbations of the function of state in 

.

v

tD  

Perform one cycle of calculations by scheme 
(9)–(15) with a priori given values of the input data: 
 

 { }= = =

0

a a a a a a a, ( ); , , 0, 0, 0 .x Y f rϕ ϕ ζ ξ  

As output information, we obtain a set of values 
of the functions  

  { }*( , ), ( , ), ( , ), ( , ), ( , )t t t t tx x r x x xϕ ϕ ξ ζ   

and a complete set of the sensitivity functions 
{ / } ,∂Φ ∂Y

h
ik  1, ,=i N  incoming into the sensitivity 

relation (15). 
  All functions are defined based on requirements 
of optimality of estimation of the prognostic functional 
(4), (20). The optimality is meant as independence of 
the estimated functional variation magnitude of 
variations δϕ(x, t) of ϕ in the domain .

v

tD  A numerical 

scheme for finding ϕ(x, t) is constructed so that the 

values of variations h
kδΦ�  and *( , , )h

Iδ Yϕ ϕ  of the 

functionals (6) and (7) do not depend on δϕ* variations 
of ϕ*(x,t) and variations of the functions of 
indeterminacy. As follows from equations (9) and (12), 
the indeterminacy functions of the model r are defined 
through the solution of adjoint problems generated by 
the variational principle for the extended functional 
up to weight matrices and coefficients. Here it is not 
important whether the observation data are available 

or not. In the general case, it is sufficient to have 
only the predicted functional Φk. The solution of the 
adjoint problem 

* ( , )k txϕ  takes part also in calculations 

of sensitivity functions Φk to variations of δY of the 
parameters Y in algorithms (15), (17), and (18). 
Recall that in the process of construction of the 
algorithms, the sources f(x, t), initial conditions, and 
heterogeneities of the boundary conditions were 
included in the set of parameters.  

The indeterminacy and sensitivity functions are 

calculated through the same functions 
*

kϕ  constructed 

for different , 1, .k k KΦ =  At the same time, their 

purposeful applications can have their own 

peculiarities. In particular, sensitivity functions are 
applied mostly to study trends in the behavior of 
functionals in the space of parameters. This is 
necessary in identification of parameters, sources, 
initial and boundary conditions, etc. Indeterminacy 
functions express errors under conditions of optimality 
of predicted characteristics and are used for analysis 
of the system as a whole and for organization of 
adaptive monitoring strategies. For instance, if the 
problem is to organize an adaptive scheme of 
localization of mobile monitoring tools to reduce 
indeterminacy of forecast, domains with larger values 
of indeterminacy and sensitivity functions can be 
most appropriate for these purposes. This is caused  
by the fact that all the functions are obtained  
from the conditions of optimality for estimates of the 

generalized forecasting characteristics. 
 

2. Arrangement of mobile monitoring tools  
in addition to a stationary program 

 of observations 
 

Let us consider a situation when the data enter 
the interval [0, ]t  from a set of stationary monitoring 

stations situated in ,

m

tD  and it is required to solve 

the problem about adaptive arrangement of additional 
mobile tools of observation. 

It is convenient to solve problems of such type 
in two steps. At the first step the extended functional 
(6) is formed, in the third summand of which all 
available observation data with weight α1 = 1 are 
taken into account; the objective functional Φk is 
excluded (α0 = 0). Under these initial prerequisites, 
the prediction-assimilation problem is solved via 
scheme (9)–(20). All sensitivity and indeterminacy 
functions are calculated as in Subsection 1. By 
configuration and ranges of the function values, 
domains in Dt with a preset level of observability 
from the monitoring stations are identified. Denote 
the domains as .

H

t tD D∈  Using the procedure of data 

assimilation in these domains, it is possible to reconstruct 
the necessary for prediction spatial-temporal structure 

of variables of state and parameters, which provide for 

the minimal value of the “observational” functional of 
quality, whence it follows that it is expedient to 
arrange the additional observations in the domain 
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/ ,A h H
t t tD D D=  i.e., beyond the observability domain 

.

H

tD  

At the second step, the problem of prediction-
assimilation of data is solved with the quality 
functionals (6) at α0 = 1 and α1 = 1 by scheme (9)–
(19), as in Subsection 1. As a result, phase spaces of 
the state functions, sensitivity functions, and 

indeterminacy functions in the domain 
h

tD  are defined. 

The observability domain ,

H

tD  which was identified 

at the first step, has a guaranteed degree of covering 
by observational data from stationary stations. 
Therefore, the criterion of the choice of measurement 
localization in subdomains of higher values of the 
indeterminacy and sensitivity functions in 

A h

t tD D⊂  

should be used for adaptive arrangement of mobile 
observations. The idea of the algorithm of adaptive 
organization of observations, based on the minimization 
condition for indeterminacy functions in the domains 
that cannot be observed by stationary monitoring 
systems, belongs to A.V. Penenko (personal 
communication). 

 

3. Sensitivity and indeterminacy functions  
in the system of simulation 

 

These functions play a key part in organization 
of direct connections and feedbacks between 

parameters of the system and objective functionals. 
This is seen from the system of equations (9)–(19) as 
applied to problems of forecast and assimilation of 
observational data. 

The scheme, first proposed in Ref. 9, is realized 
in different modifications of variational methods of 
the data assimilation, which are considered as 
traditional. The objective quality functional in it is 
minimized with respect to the function describing the 
initial state ϕ0(x). The feedback is realized only 
through solution of a conjugate problem at t = 0: 
ϕ*(x, 0). Explicit introduction of indeterminacy 

functions into the structure of models and parameters 
changes the situation radically. The indeterminacy 
function r directly includes the whole 4-dimensional 
phase space of values of ϕ*(x, t) in the feedback mode, 
and the indeterminacy function ζ includes all functions 
of the objective functional sensitivity to variations of 
the parameters. 

Introduction of the indeterminacy functions 
brings a new quality into the simulation system on 
the whole. The case in point is the regularization of 
calculation algorithms. To demonstrate the idea of 
the proof of this fact, let us consider the case when 
the operators of the process and observation models 
are linear with respect to the state functions: 
G(ϕ, Y) = A(Y)ϕ, H(ϕ) = Hϕ. This situation takes 
place, for instance, when the model of transfer  
and transformation of multi-component admixtures 

contains a linear (linearized) transformation operator. 
Under these assumptions, the system of equations 
(9)–(15) takes the form 

 0; ( ) ,
h

A
t

∂⎡ ⎤
Λ − − = Λ ≡ +⎢ ⎥∂⎣ ⎦

f r Y
ϕ

ϕ ϕ ϕ   (21) 

 * *

0 0 1 1( ) ( ) 0,T

aW H W HΛ + α − + α − =ϕ ϕ ϕ Ψ ϕ    (22) 

 1 1 *

2 2 .W
− −

= αr ϕ   (23) 

Excluding formally the functions *

ϕ  and r from 

these equations, after some transformations we obtain 
the system of equations 

 * 1

2 2 0 0 1 2

T
W W H W H

− ⎡ ⎤Λ Λ + α α + α =⎣ ⎦ϕ ϕ  

 * 1

2 2 0 0 1 2 .

T

aW W H W
− ⎡ ⎤= Λ + α α + α⎣ ⎦f ϕ Ψ  (24) 

Since αi ≥ 0 and Wi are diagonal weight 
matrices with positive elements, the systems (21)–(23) 

and (24) are well-posed. As is seen from Eq. (24), for 
α0, α1 > 0, incorporation of the quantitative tools of 
indeterminacy estimates introduces a regularization 
effect and, as a corollary, improves the convergence 
properties of iteration algorithms in solutions of inverse 
and optimization problems. Underline that the system 
(21)–(23) is solved by the scheme of the algorithm 
and the system (24) is written only for analysis of 
the algorithm behavior on the whole. 

 

Conclusion 
 

We have developed a new technique for 

forecasting of dynamics and quality of the atmosphere. 
In this technique, together with the sought state 
functions, the indeterminacy functions are calculated. 
The latter can be interpreted as errors of models, 
parameters, and input data. These functions are 
introduced into the simulation system explicitly as 
additional summands in the representation of the 
corresponding objects. The proposed algorithms are 
intended for better organization of adaptive monitoring 
strategies, for optimal forecasting of changes in the 
atmosphere quality. 
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