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Systematical calculations of the small droplets’ surface tension of the Lennard–Jones liquid 
have been performed depending on the equimolar radius (Re) and temperature (T) by the method of 
molecular dynamics. The surface tension was shown to decrease with decreasing droplet’s equimolar 
radius up to zero for a certain temperature dependent R0. The ratio of the surface tension of a droplet 
to the surface tension  of a plane liquid–vapor boundary (σ/σ∞) is a universal function of the ratio 
of the droplet equimolar radius to R0. Approximation formulae for functions σ/σ∞ = f(Re/R0) and 
R0(T) are proposed. 
 

Introduction 

Surface tension of small droplets plays a decisive 
part in the classic nucleation theory and its numerous 
modifications.1 These theories are permanently used 
in interpretations of experimental data, but the 
results obtained are often unsatisfactory. This is 
associated with the concept of inapplicability of the 
surface tension concept to small droplets. 
J.W. Gibbs, who had brought  in common use the 
notion of the tension surface, meant that the concept 
of surface tension is applicable even to the smallest 
droplets until the tension surface radius is positive.2 
With decrease of the droplet size, both the radius of 
the tension surface and the surface tension decrease 
and vanish simultaneously. Thus, the droplets’ 
surface tension depends on their radius. 

Based on thermodynamic considerations, 
R.C. Tolman has described the surface tension as a 
function of radius3: 
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where σ, σ
∞
 are surface tensions of a droplet and of a 

plane surface “liquid–gas”; Rs is the tension surface 
radius; δ = Re – Rs is the difference between the 
equimolar radius and Rs. The formula (1) is often 
used in interpretations of experimental data within 
the framework of the classical nucleation theory (see, 
for instance, Ref. 4). However, this formula is 
applicable only to large droplets, for which δ weakly 

depends on Rs. In this connection, a problem arises 
of exact determination of surface tension as a 
function of the droplet radius.  

To solve this problem, the methods of direct 
numerical simulation, Monte Carlo and molecular 
dynamics, are most adequate. The method of 
molecular dynamics is used for a long time in 
calculations of surface tension of a plane surface 
“liquid–gas,”5 as well as in calculations of surface 
tension of liquid droplets.5–10 In Refs. 6 and 7, in 
fact, the foundations of the technique of the 
molecular-dynamics calculations of the surface 
tension of small droplets were laid, therefore, they 
are of particular interest. At the same time, all these 
calculations can be performed only in a narrow 
region of the system parameters and fail to determine 
accurately the dependence of the droplet surface 
tension on the radius. Besides, these methods do not 
take into account the applicability of the concept of 
the surface tension to droplets of a small radius. 
 In this paper, we present systematic calculations 
of surface tension of small droplets by the method of 
molecular dynamics. The calculations were performed 
in a wide range of the system temperatures and sizes 
and allowed some generalizations. The limit of 
applicability of the concept of surface tension to 
droplets of a small radius has been established.  

Computation technique 

The surface tension of the plane boundary 
“liquid–gas” was calculated by the formula  
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where PT and PN are the tangential and normal 
components of the pressure tensor with respect to the 
interface; the axis z is perpendicular to the surface. 
The components of the pressure tensor were 
calculated by the well-known formulae of statistical 
physics.5 A plane liquid layer surrounded by vapor 
and dividing a rectangular cell into two parts was 
created. The cell contained 4500 molecules.  

Surface tension of droplets was calculated by 
the method of molecular dynamics using a cubic cell 
containing from 70 to 4500 particles under periodic 
boundary conditions. The pressure tensor P(r), radius 
of the tension surface Rs, and surface tension of 
droplets σ were calculated by the formulae5,6: 
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The last two formulae correspond to the Irving–
Kirkwood pressure tensor. Here n(r) is the 
concentration of gas or liquid molecules; 

( )2
12 12( , )rρ − αr r  is the paired configuration function 

of molecules, occurring at the distance 12r  from each 
other. The line, which joins these two molecules, 
goes through the point r and is divided by it in the 
ratio α/(1 – α); u′(r12) is the derivative of the paired 
interaction potential of two molecules; er, eθ, eϕ are 
the unit vectors in the spherical coordinate system. 
Temperature Ò, concentration n(r), and the integrals 
entering the formulas (3) for the pressure components 
were computed by the method of molecular 
dynamics.5–7 

We used the paired interaction potential, which 
is the Lennard–Johns potential, “truncated” by a 
spline11,12: 
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The constants à and b were chosen from the 
condition of sewing together of the potential and its 
derivatives at the point r = 4.5σ0. All the 
calculations were performed at average density 
ρ = N/V = 0.066143 in the cell; N is the number of 
particles in the cell; V = LxLyLz (Lx, Ly, Lz are the 
cell sizes in σ0 units). 

The initial state of a droplet was formed as 
follows. The particles were placed in the nodes of a 
face-centered lattice in the cell center in a deep 
spherical potential well. Certain velocities were 
assigned to them in the correspondence with a given 
temperature. After several thousands of time steps, a 
spherical droplet was formed in the cell center. Then 
the potential barrier was removed and the particles 
gradually occupied the whole volume of the cell at a 
given temperature. This procedure resulted in an 
equilibrium system consisting of a liquid droplet in 
the cell center and vapor, occupying the remaining 
space. The droplet size depended on the number of 
particles in the cell and the temperature. 

For the produced droplets, the profiles of 
density, pressure tensor, energy, and temperature 
were calculated as functions of the distance to the 
droplet center. The droplet center was sought as the 
mass center of particles having three or more 
particles in their nearest neighborhood (r ≤ 1.5σ0). 
The origin of coordinates was placed in the droplet 
center, and the whole cell space was divided into 210 
spherical layers. In each 20 time steps, the number of 
particles, energy, and temperature in every layer 
were calculated, as well as normal and tangential 
components of pressure at the layer boundaries. The 
total time of one computation took not less than 
1.6 ⋅ 107 time steps. PN was computed by the formulae 
(3) according to the technique described in Ref. 7. PT 
was also computed by the formula (3) in contrast to 
Ref. 7, where the condition of mechanical 
equilibrium of a droplet was taken into account. 

In all calculations the reduced variables were 
used11: distance 

*
0,r r= σ  temperature 

*

T kT= ε , 
energy *

,U U= ε  density 3*
0
,ρ = ρ σ  time 

1 2*
0 0( ) ,t t m= σ ε  pressure 

3*
0

,p p= σ ε  surface tension 
* 2

0
,σ = σ σ ε  where ε  and 0σ  are parameters of the 

Lennard–Jones potential, m0  is  the  molecular  mass.  
 The variables, marked by the asterisk, are 
dimensional. The following reduced temperatures 
T: 0.65; 0.7; 0.75; 0.8; 0.85; 0.9; and 0.95 were used 
in calculations. The calculation error for surface 
tension did not exceed 3%. 

Results of calculations and discussion 

Figure 1a presents typical density profiles ρ(r) 
of a droplet. Equimolar droplet radii were calculated 
on the base of these profiles by the formula7: 
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where ρl, ρg are densities in the droplet center and in 
gas, respectively. 

Figure 1b presents components of the pressure 
tensor as typical functions of the distance from the 
droplet center. These functions were used to calculate 
radii of the tension surface and the surface tension of 
droplets by formulae (3). The results of calculations 
are presented in Fig. 2. 

 

 
a 

 

b 

Fig. 1. Profiles of density (a) and components of the 
pressure tensor (b) for a system containing 
N = 200 molecules in the cell, T = 0.65; 0.7; 0.75; 0.8; 
0.85 (from top to bottom). Solid lines correspond to PN, 
dashed lines to PT. 

 

Figure 2a presents surface tension as functions 
of equimolar radius of droplets. With growing radius 
of droplets the surface tension tends to a limit, 
corresponding to surface tension of the plane 
boundary “liquid–vapor” at a given temperature. 
Surface tension of droplets strongly decreases with 
the decrease of radius and becomes zero at a certain 
equimolar radius R0, whose value depends on the 
temperature. Note that the radius of the tension 
surface Rs also becomes zero in correspondence with 
the Gibbs remark.2 However, in agreement with 
Gibbs supposition,2 the droplet does not vaporize in 
this case and no qualitative changes can be seen in 
density profiles and components of the pressure 
tensor even for droplets  characterized by formally 

negative surface tension. For instance, the curves 
corresponding to T = 0.85 (lower curves in Fig. 1) 
refer to a droplet with negative surface tension.  

Figure 2b presents droplet surface tension as 
functions of temperature at constant equimolar radii. 
The upper boundary refers to surface tension of the 
plane boundary “liquid–vapor” calculated by formula 
(2) for a plane layer of a liquid. This function can be 
well approximated in a given range of temperatures 
by the straight line σ

∞
 = 2.5421 – 2.1202T. Droplets 

of large equimolar radius show the similar 
temperature dependence, but the straight lines lay 
somewhat lower. There exists such a temperature for 
small droplets, at which the surface tension becomes 
negative. This temperature is much lower than the 
critical temperature of the system. 

 

 
a 

   
b 

Fig. 2. Surface tension of droplets (σ) as a function of 
equimolar radius (Re) at constant temperature (T = 0.65; 
0.7; 0.75; 0.8; 0.85; 0.9; 0.95 from top to bottom) (a) and 
of temperature (T) at constant equimolar radius 
(Re = ∞; 10; 5; 4; 3 from top to bottom) (b). 

 

The presented results allow some generalization. 
For instance, if to assume σ/σ

∞
  as a function of the 

Re/R0, then the points, corresponding to different 
temperatures, lay onto the same curve (Fig. 3a).  
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This means that the relation between surface 
tension and equimolar radius of a droplet is of 
universal character. 

Approximation of this function by the 
polynomial of third degree R0/Re has the form 
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Figure 3b presents R0 as a function of temperature, 
which is well approximated by the expression  
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Fig. 3. The ratio of surface tension of a droplet to surface 
tension of a plane surface (σ/σ∞) as a function of the ratio 
of equimolar radius to R0 (a); and R0 as a function of 
temperature (b). a: T = 0.65(°); 0.7(◊); 0.75(+); 0.8(□); 
0.85(×); 0.9(•); 0.95(+); the solid line is the function (6); 
b: □ denotes the results of MD calculations, the solid curve 
is the function (7). 

 

This approximation was selected so that R0 
become infinite at a critical temperature 

c
≈T 1.199, 

because even the plane boundary “liquid–vapor” 
disappears at this temperature. 

Recently, an experimental work on measuring 
nucleation rate of argon in a pulse cryogenic chamber 

at a temperature from 42 to 58 K appeared,13 in 
which the critical nucleus size was estimated by the 
Gibbs–Thomson formula  
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Here nGT is the number of molecules in the critical 

nucleus; vl is the volume of a molecule; * *
eS p p=  is 

the vapor supersaturation; σ∗ is the surface tension of 
the critical nucleus; it was taken equal to surface 
tension of the volume liquid phase. Variables in 
formula (8) are dimensional. The following values of 
nGT were obtained: 80 at Ò* = 58 K; 40 at Ò* = 42 K. 
The estimates made by formula (7) demonstrate that 

values of R0 for argon ( 120kε = K) are 2.33 and 1.9, 

respectively, at these temperatures. By our estimates, 
the density of the liquid in the droplet center under 

these conditions is 0.82. If GTR  is defined in 

correspondence with the formula nGT = 4/3π(RGT)
3
ρl, 

then values of R0  for these temperatures is 2.86 and 
2.27, respectively. Using Eq. 6, we obtained 0.368 
and 0.33 for σ/σ

∞
. Evidently, that the application of 

formula (8) is incorrect in estimations of the critical 
nucleus size. The decrease of the surface tension of 
the critical nucleus as compared to σ

∞  should be 
taken into account.  

In Ref. 14, nucleation of argon was studied by 
the method of molecular dynamics. The size of 
critical nuclei was estimated by models, which 
include the concept of the surface tension. It was 
found that the size of the critical nucleus varied from 
11 to 28 atoms in the temperature range from 45 to 
70 K. These values lead to “negative” surface tension 
of the critical nucleus. Thus, the concept of surface 
tension in this case is inapplicable to estimation of 
the critical nucleus size.  

Although the concept of surface tension can be 
used in building the nucleation theory in some cases, 
it is necessary to be careful in its application. The 
calculation methods dealing with formation of 
critical nuclei in the process of nucleation should be 
developed, which do not use the droplet model.  
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