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Analytical expressions for the expansion coefficients in the series of exponents s(g) are 

derived in the case of an individual line with the Lorentzian, Doppler, and Voigt contours. The 
method of estimation of the absorption function at small pressures is suggested based on the 
asymptotic value of the corresponding integral, written with the use of a series of exponents for the 
individual line and for the arbitrary number of lines. It is shown numerically that asymptotic 
estimations may be used in a wide range of pressures and are simple in applications. Qualitative 
evaluations of their areas of applicability are given. The availability is given of bending points on the 
curve s(g) in places corresponding to the line maxima, and their possible influence on the calculation 
accuracy at small pressures is noted. 
 

1. Introduction 

Climatic models impose heavy demands on 
calculations of radiation propagation in the 
atmosphere. 

Line-by-line calculations of the absorption by 
atmospheric gases with regular contour of spectral 
lines are suitable in the accuracy, however, are 
unacceptable in the radiation blocks of climatic 
models, because they consume plenty of time. 

The solution of the problem of exact calculation 
turned out to be possible when using the expansions 
of radiation values in the series of exponential 
functions. This method, known as the k-distribution 
method, is now the most widespread in considering 
the radiation characteristics of the atmosphere. As a 
rule, the ways of finding the coefficients of such 
expansions are reduced to different methods of 
minimization, i.e., to a purely calculational procedure. 
The algorithms, which use the series of exponential 
functions in large models, run into problems when 

there is a need to make the calculations at small 
pressures in the high atmospheric layers. This is 
associated with the fact that because of specific 
behavior of the ordered absorption coefficients s(g) at 
small pressures we must consider a great number of 
terms in a series of exponential functions for 
obtaining the necessary accuracy. 

This problem has been detailed in the paper by 
Chon et al.1 Hence, when calculating the 
transmission function for water vapor, it was shown 
that the contribution to the rate of cooling at 
pressures less than 1 mbar took place from very small 
part (< 0.005) of spectrum close to centers of 
absorption bands where the absorption coefficients 
varied by 4 orders of magnitude. This requires at 
least 100 terms in the k-distribution to calculate 
exactly the cooling rate. 

In one of the most developed models of 
radiation transfer2 the IR-range (10–3000 cm–1) is 
divided into 16 bands. Each spectral band is divided, 

in its turn, into 16 intervals in g-space, in which 7 
intervals are placed between g = 0.98 and g = 1.0, 
that is made to determine exactly the cooling rate 
under conditions when the main contribution is made 
by the line centers in the band, in other words, the 
part of k-distribution with the values of g about 1. It 
turns out that the calculation efforts become the 
greater, the lesser is the absorption coefficient and, 
consequently, the lesser is its contribution to the 
transmission function. Such a situation casts some 
doubt upon the rationality of the situation, when for 
calculating small values more time is required than 
for large values. 

The typical form of the absorption coefficient is 
given in Fig. 1 for a part of the CO2 spectrum at 
large and small pressures. At small pressures, 
evidently, the absorption is determined by narrow 
spectral regions close to strong lines. This is reflected 
in the difference of the behavior of s(g) (see Fig. 2) 
for the same spectral range. 

 

780 785 790 795 ω, cm–1
10–31

10–29

10–27

10–25

10–23

10–21

10–19

10–17

s

P=0.001 mbar

P=1013.17 mbar

κ(ω), cm2
 ⋅ mol.–1 

 

Fig. 1. CO2 spectrum. T = 296 K, Lorentz contour up to 
10 cm–1, the interval equals 0.001 cm–1, 780–800 cm–1. 

 
With the pressure decrease (see Figs. 1 and 2) 

the curves s(g) (which remain monotonous) increase 
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sharply in the vicinity of g = 1, as indicated above, 
and are determined by the peaks of the strongest 
lines in the range under study. 
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Fig. 2. Function s(g) for CO2. T = 296 K, Lorentz contour 
up to 10 cm–1, the interval equals 0.001 cm–1, 780–800 cm–1. 

 

It should be noted that, in contrast to the 
formula, commonly used to determine s(g) 

minimization, there exist exact formulae for 
coefficients of expansion of radiation values in series 
of exponents,3 expressed in terms of the absorption 
coefficients, which enable us to simplify considerably 
the necessary calculations. Moreover, the approach 
developed in Ref. 3 affords a new way to consider 
the problem associated with the situation of small 
pressures in the middle and upper atmosphere. 

Chapter 1 describes the obtained analytical 
expressions for s(g) for the Lorentzian, Doppler, and 
Voigt contours in the case of one line. In Chapter 2 
an asymptotic estimation is given for the transmission 
function of one line with the use of s(g) obtained in 
Chapter 1. 

In chapter 3 the proposed asymptotic method is 
generalized for the case of the presence of an 
arbitrary number of lines in the considered interval. 
 

2. Values of S(g) for an isolated line 

Now we present the general formulae for the 
expansion coefficients of radiation values in the series 
of exponents expressing them through the absorption 
coefficients (see, for example, Refs. 3–5).  

The transmission function P(ω) in the frequency 
range Δω = ω″ – ω′  is of the form 
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where z is the optical depth, κ(ω) is the spectral 
absorption coefficient, f(s) is the Laplace transform 
P(z), g(s) is the Laplace transform of the function 
P(z)/z, s(g) is the function inverse to g(s); and s(g) 

denotes the ordered by magnitude values of κ(ω) for 
ω ∈ [Δω]; b

ν
, g

ν
 are ordinates and abscissas of the 

corresponding quadrature formula. The construction 
of the function g(s) is shown in Fig. 3. 
 

 
Fig. 3. Scheme of integration for g(s). For a given S the 

value g is the sum of intervals, in which κ(ω) < s. 

 
Relation (3) enables us to derive the analytical 

expressions for s(g) of one line in the case of the most 
usable contours: Lorentz, Doppler, and Voigt. 
Consider some methods of deriving s(g). One of them 
is the use in relation (3) of definition g as a sum of 
frequency ranges, in which κ(ω) < s. 

Assume that we have the Lorentz contour (see 
Fig. 4), Q, a, ω0 are the intensity, the collision half-
width, and the spectral line centre, respectively, 
Δω = ω2 – ω1 is the spectral range, where the 
absorption is considered: 
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Fig. 4. To the calculation of s(g) for Lorentz contour. 

 

Hence, the exact formula for s(g) in the case of 
one line with the Lorentz contour is 
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For the Doppler line with the halfwidth DΔω  
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we have 
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Equation (6) can be also derived from Eq. (3), 
using the definition g as an integral of P(z)/z 
through changing the variables  
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tan , d d
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α
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ϕ
 

and evaluating then the obtained contour integral. 
However, there is a simpler method of recording s(g), 
used for any symmetric contour. 

Let s = ϕ(x) be the even function of the 
dimensionless variable x (see Fig. 5). It is evident 
that the interval value [a, b] = 2x (x = ϕ–1(s) by 
definition of the inverse function). 

Again, [a, b] = 1 – g (by definition (3)), from 
where  
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Fig. 5. To the construction of s(g) for the arbitrary even 
function ϕ(x). 

 
If in the line contour f(ω – ω0) we go to the 

variable x  
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that is, the function s(g) can be derived when 
substituting in the expression for the difference 

contour 0ω − ω  by 
(1 )

.
2

g− Δω
 As is seen, the 

expressions for the Lorentz and Doppler contours 
confirm this rule. Now write the expression for s(g) 

in the case of the Voigt contour. 
The Voigt contour is of the form: 
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where a and ΔωD are the collision and Doppler 
halfwidths of a spectral line: 
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The values of s(g) calculated by formulae 
derived here and immediately with the use of 
relations (3) through the absorption coefficient are in 
complete agreement, when the frequency range is 
considered, in which the line is located symmetrically 
in its centre. 

3. Asymptotic estimation for the 
transmission function of one line 

Characteristics of the s(g) behavior at high and 
low pressures can be found in Fig. 2. In the case of 
one line these characteristics would remain as before, 
and the value of transmission at low pressures is 
determined by a small area close to g = 1. 

For the considered in chapter 2 contours at g = 1 
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In the case of the Voigt contour (10) 
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The conditions (12) have made it possible to use 
the asymptotic estimation of the transmission 
function in the vicinity of g = 1 in case of low 
pressures. To follow the conditions of the use of the 
method of steepest descents, we consider the 
expression A connected with the unknown 
transmission functions in the form 
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This substitution is oriented to the problem 
physics, to low pressures in the upper atmospheric 
layers, i.e., it proposes the smallness of u. Further 
the standard procedure corresponding to the method 
of steepest descents6 and the relation P = 1 – A 
following from Eq. (13) give: 
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At u → 0 equation (14) results in Pas = 1. 
Now we present an example of calculation of 

the absorption function using the asymptotic 
evaluation (14), see Fig. 6.  

Selected conditions of the calculation refer to 
the standard atmosphere of mid-latitude summer. It 
is evident that the asymptotic estimation, which is 
independent of the precision in calculating the 
absorption coefficient, coincides with the line-by-line 
calculation at mean pressures and begins its deviation 
from it at low pressures and small distances. Note 
that the Doppler contour form was used in the 
asymptotic calculation. 
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Fig. 6. The absorption function A = 1 – P for one line, 
calculated using the asymptotic estimation (13) (curves)  
and the method line-by-line (points). (1) is the total 
pressure p = 0.1 mbar; T = 230 K; (2) is p = 0.001 mbar, 
T = 190 K; (3) is p = 0.0001 mbar, T = 230 K; a fraction  
of CO2 is 3⋅10

–4. 
 

At small pressures just the region of fast change 
of s(g) makes the predominant contribution to the 
integral P. This region is the “influence zone” of Δg 
(in terms of asymptotic analysis), which is estimated 
by the standard way7: 
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For the case, considered in Fig. 6, ( )2/ 1′′ϕ  

equals 0.01 cm–1. 
This also gives the limitation for u, determining 

to some extent the applicability limits for Eq. (14): 
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Introduce the following designations: 
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The condition of the asymptotic form 
applicability is f1 > f2. As we can see from Fig. 7, for 
the spectral range 780.567–780.7, the applicability 
field of the asymptotic form is propagated from 
L*κ = 10–5  to the direction of the smaller L*κ. 
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Fig. 7. Limitations imposed on the absorbing masses, 
following from (16). Dash lines f1, f2 correspond to a total 
pressure of 10 mbar, a CO2 pressure of 3⋅10–3 mbar, 
T = 238 K; solid curves f1, f2 correspond to a total pressure 
of 1 mbar, a CO2 pressure of 3⋅10–4 mbar, T = 275 K. 
Curves f1, f2 at lower pressures almost do not differ from 
those at 1 mbar. 

4. Asymptotic estimation for the 
transmission function at an arbitrary 
number of lines in the range under 

study 

At small pressure of the buffer gas the lines are 
not too far overlapped, because of their small 
halfwidths. Therefore, to point out some details, 
typical for such a situation, we consider the limiting 
case of non-overlapping lines (see Fig. 8). Here j is 
the line index.  

In this case (direct consequence of Eq. (1)) 
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where g(s) is constructed for each line and the 
transition to a series of exponents is performed for 
the Pj-function of transmission of an isolated line. 
 

 
Fig. 8. Schematic spectrum from small pressures. 

It is obvious that relation (17) increases the 
number of terms in the series. Further, the 
consequence of Eqs. (2) and (3) will be (for the 
spectrum in Fig. 8) 
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Here g(s) and s(g) are constructed for a complete 
spectrum. Using the same designations the 
application of quadrature formulae gives 
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However, equation (20) does not remove the 
inequality (19). In other words, even the asymptotic 
(Fig. 8) assumption about isolated lines does not 
remove the procedure of construction of s(g) by 
reducing it to sj(g). 

Thus, s(g) for the range containing isolated 
lines, cannot be expressed through sj for isolated 
lines. Although we can construct the expansions for 
isolated lines throughout the range Δw and use them 
in Eq. (20), but in this case the number of expansion 
terms increases considerably (in proportion to the 
number of lines). However, as we can see from 
Figs. 1 and 8, the transmission at small pressures is 
determined by the sum of the strongest lines, 
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and in the case of asymptotic estimation we have 
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Figure 9 shows an example of calculation of the 
absorption function by Eq. (21) with successive 
taking account of the strongest lines in the range 
780–790 cm–1 for several sets of conditions, 
corresponding to the mid-latitude summer 
atmosphere.  

The calculation of line-by-line and the 
asymptotic estimation agree for intermediate 
distances and pressures (curves 2, 3). Deviations are 
observed at high pressures and long distances 
(curve 1) and, on the contrary, for small pressures 
and distances (curves 1 and 2). Asymptotic 
estimations conceptually are valid for small pressures 
and are preferable under these conditions than line-
by-line results. It is hardly probable that the precise 
numerical criteria of their applicability can be 
indicated. In any case, they can be used, when the 
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lines can be considered as Doppler ones, and, as is 
shown in Fig. 9, their coincidence with line-by-line 
calculation enables us to state that they are also 
valid for pressures, which are not very small. The 
calculation with the use of asymptotic estimations 
can be made, as we can see from the above formulae, 
simply and rapidly. 
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Fig. 9. The absorption function A = 1 – P for the interval 
780–790 cm–1, calculated using the asymptotic estimations 
(13) (curves) and by the line-by-line method (points).  
(1) is the total pressure p = 0.1 mbar, T = 230 K, (2) is 
p = 0.01 mbar, T = 170 K; (3) is p = 0.0001 mbar, T = 230 K; 
a fraction of CO2 is 3⋅10

–4. 

 

The peculiarities of the behavior of s(g) should 
be noted, which can be essential at small pressures. 
For the jth line  
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For several lines  
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Let us find the derivative of s(g) as the derivative of 
the inverse function 
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becomes zero. Figure 10 shows this case. This implies 
that one the function s(g) there appear the points of 
inflection. The case of two lines at frequencies 
780.633483 and 780.756586 cm–1 in the range 780.6–
780.8 cm–1 is given in Fig. 11. 

  

Fig. 10. To the construction of the inverse function for 
s(g). 
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Fig. 11. Spectral lines in the range 780.6–780.8 cm–1 (a) 
and the corresponding function s(g), having the inflection 
point (b). 

 

The availability of such points of inflection on 
the curve s(g) can be seen close to its maximum at 
any pressures (see Fig. 12). 

For high pressures the availability of points of 
inflection is not of great importance in calculations 
because the contribution of great g is small. In case 
of low pressures these points may be important, 
because the transmission is determined just by the 
range g close to maximum. 
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Fig. 12. The transmission function of CO2 in the range 780– 
880 cm–1, the total pressure p = 1000.0 mbar, the step is 
10–3 cm–1; (a) is the interval of g close to maximum; (b) is  
the interval of g at [0,1]. 

Conclusion 

Earlier, the authors have developed an original 
approach for obtaining the expansions of radiation 
values in the exponential series based on the theory 
of Dirichlet series (Refs. 3–5 and the references). 
Using this approach, the analytical expressions were 
derived for the expansion coefficients of transmission 
functions in the exponential series through the 
absorption coefficients for homogeneous (see Eq. (3)) 
and inhomogeneous media, for integrals with the 
source function, as well as directly for radiation 
fluxes. In addition to purely calculational advantages 
as compared with obtaining s(g) by minimization, the 
analytical expressions of the type (3) have made it 
possible to perform a detailed analysis of 
characteristics of k-distribution coefficients. 

 
 
 
 

Thus, based upon the determination (3) of g, as 
a sum of frequency ranges, in which κ(ω) < s, we 
managed to derive formulae for coefficients of 
exponent series of s(g) in case of one line with 
Lorentz, Doppler, and Voigt contours. Analysis of 
derivative function of s(g) has revealed a more 
detailed structure of this curve. It turns out that at a 
general increasing character its points of inflection 
correspond to line maxima, that can have an effect on 
the calculation accuracy at small pressures. 

The structure of s(g) at small pressures has 
made it possible to write the asymptotic estimation 
for the integral, presenting the transmission function 
in case of one line and an arbitrary number of lines. 
The calculations made for CO2 absorption in the 
15 μm range have shown that the asymptotic 
estimations can be used in the wide pressure range, 
where their results coincide with line-by-line 
calculations, having the advantage in the simplicity 
of the formulae and in the assumption of the 
calculation time. 

On the whole, the obtained results have shown 
that the mathematical approaches in some cases can 
yield the interesting results and favor the 
understanding better than the direct numerical 
simulation. 
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