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Peculiarities of the optical field formation inside micron-sized weakly absorbing spherical 
particle under illumination by a focused Gaussian laser beam with a time regime in the form of a 
single monopulse and a train of ultrashort laser pulses are considered. It is established that the 
energy transfer efficiency of incident radiation in a selected high-quality resonance mode of a particle 
at its illumination by a focused light beam depends greatly on the train interpulse interval and the 
depth of linear frequency modulation of each pulse. The influence of irradiation geometry of a 
particle by laser and the pulse number in the train on the time behavior of internal optical field and 
its peak intensity is investigated. 

 

Introduction 

A considerable body of recently published 
scientific investigations, devoted to the application of 
micron transparent particles for laser generation,1 
optical filtration of radiation,2 aerosol spectroscopy,3 
and optical microelectronics4 pointed to a great 
interest of scientists to the unique characteristics of 
spherical microresonators, possessing by a wide 
spectrum of resonance electromagnetic modes (modes 
of whispering gallery WGM). 

The whispering gallery modes are characterized 
by a very high Q factor (>105), by a narrow spectral 
contour, great lifetimes (of the order of 
nanoseconds), and a high degree of localization of the 
optical field close to the resonator surface. Natural 
frequencies of WGM are determined by the 
microparticle size and its optical characteristics. In 
this case the problem of the most effective resonance 
optical excitation of such microresonators is actively 
discussed in the literature as before now.5–7  

It is known that for the resonance excitation of 
the internal optical field in a particle, it is necessary 
to fulfill a definite condition, under which the 
frequency of incident light wave should coincide with 
the frequency of any natural mode of a particle. In 
this case the space-time distribution is determined by 
the field of an excited mode. To increase the 
operation efficiency of particles-microresonators, it is 
necessary to create optimal conditions of excitation. 
This is achieved mainly by the most precise tuning to 
the resonance. The use of laser pulses of a supershort 
length of the order of pico- and femtoseconds at the 
cost of their wider frequency range enables one to 
improve greatly the tuning to the resonance, and 
hence, to increase the excitation efficiency of the 
internal particle field.8 

A question on the effective excitation of 
electromagnetic resonance modes in a spherical 
particle was considered before, both theoretically5 
and experimentally.6,7 Thus, in Ref. 5 the resonance 
excitation of internal optical field of transparent 
spherical microparticles was simulated numerically, 
when irradiating them by a train of ultrashort laser 
pulses. It was shown that the incident radiation can 
be tuned optimally to a given high quality particle 
resonance through variation of the train interpulse 
interval in combination with linear frequency 
modulation of each pulse (chirping). 

The geometry of particle irradiation plays a key 
role in this process. Actually, when illuminating a 
spherical particle with an extended (as compared 
with its diameter) laser beam or by a plane wave, the 
only condition for obtaining resonance configurations 
of internal optical field is the fulfillment of a definite 
relationship between the value of the diffraction 
parameter of the particle and its refractive index. 
Because the width of an ideal plane wave in space is 
infinite, probably, the spatial harmonics can be found 
in its composition for excitation of appropriate modes 
of the optical field. However, just due to its infinite 
extension, the plane wave is the least efficient 
exciting source, since the energy of the wave is 
infinite. In practice,9,10 as a rule, we deal with not 
plane waves but with focused beams, which focal 
necking can be compared or is less than the particle-
microcavity size. The space structure of the optical 
field inside the particle in this case differs from the 
case of its excitation by a plane wave, especially with 
the use of a train of ultrashort pulses. 

The above-mentioned problems, to our 
knowledge, were not considered in the scientific 
literature thus far, and therefore, the goal of this 
paper is the theoretical study of the time dynamics of 
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the optical field inside a micron spherical particle of 
small absorption, illuminated by a limited in space 
Gaussian beam with the time mode in the form of a 
single monopulse and a train of ultrashort laser 
pulses. We will use the results of the unified Mie 
theory with taking into account the nonstationarity 
of the optical field formation in the vicinity of a 
particle in order to study the problem of the most 
efficient regimes of exciting resonance 
electromagnetic modes of particles by the frequency-
pulse radiation at variation of its time parameters 
and different geometry of particle irradiation. 

Structure of optical fields at 
irradiation of a spherical microparticle  
by a monochromatic spatially-limited 

light beam 

Now we consider the basic results of the 
generalized Mie theory,11,12 describing the elastic 
scattering of the monochromatic laser radiation on a 
spherical microparticle, which is a limited in space 
focused light beam with the Gaussian transverse 
intensity profile and the necking size comparable 
with the particle diameter.  

When describing the diffraction of plane 
electromagnetic waves on a dielectric sphere, it is 
well known that the classical Mie theory is used. In 
the case of spatially-limited light beams with an 
arbitrary intensity distribution in the cross section, 
we can also use the results of a given theory if 
preliminary to generalize it to a given class of beams. 
The central moment of the generalized Mie theory is 
the representation of electromagnetic field of the 
incident light beam on a particle in the form of 
expansion by partial waves (spherical harmonics), 
similarly to the case of the plane wave. As a result, 
there appear two sets of complex coefficients TE( )m

n
g  

and TH( ) ,m

n
g  describing the amplitude and the phase 

of each partial wave, which are called the coefficients 
of the beam shape (BSC) for partial waves of TE and 
TH polarization, respectively.13 The value of these 
coefficients does not depend on space coordinates, 
and is determined only by a specific beam profile and 
the geometry of their incidence on a particle. 

In the Davis terminology (see, e.g., Refs. 11 and  
14), the electromagnetic field of the focused Gaussian 
light beam (monochromatic radiation) is described in 
the form of expansion along the orthogonal system of 
space functions in the spherical coordinate system – 
vector spherical harmonics. Now we introduce the 
Cartesian coordinates (x′y′z′), centre of which is 
located in the middle of the focal beam waist with 
the halfwidth w0 (Fig. 1). 

Let us assume that a linearly polarized (along x-
axis) Gaussian beam is propagated along z′-axis. The 
second coordinate system (xyz) is commonly 
associated with the centre of a spherical particle and 
is used for expansion by partial waves. The position 
of the origin of the coordinate system (x′y′z′) relative 

to the coordinate centre (xyz) is characterized by a 
set of coordinates (x0, y0, z0). 
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Fig. 1. Representation of disposition of coordinate systems 
in the problem on diffraction of a focused light beam on a 
spherical particle. 

 
An expression for an internal electric field of the 

particle in this case represents a generalized analog of 
an appropriate notation for the field of a plane wave 
scattered on a particle15 with taking into account the 
modification of the amplitude coefficients cn, dn by 
the corresponding beam shape coefficients: 

 ( ) ( ){ }(1) (1)
0

0

( ) ,
n

n nm nm nm nm

n m n

E R C iD

∞

= =−

= −∑∑E r M r N r  (1) 

where  

 
2 1

( 1)

n

n

n
R i

n n

+
=

+

, (1) ( )
nm

M r , (1) ( )
nm

N r   

are spherical vector-harmonics; 

 ( )
r
r θ ϕ= + θ + ϕr e e e   

is the radius-vector in the spherical coordinate system 
(see Fig. 1); 
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denotes the generalized amplitudes of partial waves 
connected with the Mie coefficients for a plane wave 
cn, dn (here we use designations from Ref. 15).  

In its turn, the beam shape coefficients TE( )m

n
g  

and TH( )m

n
g  can be found as two-dimensional 

integrals from radial components of electric field 
( )
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initial light beam: 
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where c is the light velocity in vacuum. 
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Note that the calculation of BSC for a 
particular type of beams presents an independent 
problem and is considered, e.g., in Refs. 13, 16–18. 
We cite the equations for BSC for the case of the 
incidence of a weak-focused beam of the Gaussian 
transverse profile on a particle, the electric field of 
which in the region of the focal waist is of the form: 
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In the framework of the first order (along the 
parameter s = w0/LD) Davis approximation19 derive 
an expression for radial component of electric field of 
the Gaussian beam: 
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The equation for Hr is of a similar form with the 
following substitutions in the last line of the Eq. (4): 
cos ϕ → sin ϕ and ξ0 → η0. Then the BSC are 
expressed in the form 
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Here we introduce the dimensionless variables: 

 0 0 0 ,x wξ =  0 0 0 ,y wη =  0 0 ;Dz Lζ =   

2

0DL kw=  is the beam diffraction length of the radius 
w0; 

 ( )( )1

02Q i−
ζ = + ζ − ζ .  

In this case the reciprocal relations are true between 
the coefficients19: 
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Correspondingly, for a plane wave (linearly 
polarized along x axis), since Er = Ex sinθ cos ϕ and 
Hr = Hy sinθ sin ϕ all BSC are equal to zero besides 
two pairs: 

 TE( 1)( ) 1 2
n

g
±

=  and TH( 1)( ) ( /2).
n

g i
±

= ∓   

As an example of the use of the generalized Mie 
theory, figure 2 shows the space distribution of the 
relative intensity of the optical field calculated by 
Eqs. (1)–(5): 

 ( )* 2

0( ) ( ) ( )B E= ⋅r E r E r   

(factor of the field inhomogeneity) in the vicinity of 
a clear water droplet with radius a0 = 10 μm, when a 
monochromatic Gaussian beam falls on it, having the 
waist radius w0=a0/4 and directed to the center 
ξ0 = 0 and to the particle edge ξ0 = 1. The water 
refraction coefficient na was equal to 1.33, which at 
λ0 = 800 nm gave the value of the diffraction 
parameter (Mie parameter) of the particle 

 xa = 2πa0/λ0 � 78.5.  

The intensity profiles are given in the plane xz 
passing through the centre of a droplet (equatorial 
plane of the particle). 

It is clear from Fig. 2 that the character of the 
spatial distribution of the optical field varies 
depending on the geometry of the droplet 
illumination by a laser beam.  
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Fig. 2. Relative intensity of the optical field in the vicinity 
of a water droplet at the edge (a) and central (b) incidence 
of a narrow Gaussian light beam. The direction of radiation 
incidence is from the left to the right, the particle contour 
is shown by dash line. 
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If to speak about the field inside a droplet, 
which will be considered later on, the increase of the 
beam impact parameter (ξ0 in this configuration) 
leads, first of all, to a glancing propagation of a part 
of light beam in a particle and to formation of a 
noticeable surface field. At the same time, the 
droplet center remains “dark.” In contrast to this 
case, the central radiation incidence (when ξ0 = 0) 
demonstrates a weaker modification of the beam 
intensity spatial profile inside the droplet, when 
varies only its amplitude, but any surface modes is 
not formed. 

Underline that when directing a spatially-
limited beam to the area, close to the particle edge, 
there occurs the most effective excitation of 
resonances of internal field with high Q factor.12,20–22 

This is a consequence of specific spatial distribution 
of optical field of such modes, which is localized 
mainly in the circle area at the particle surface. This 
leads to the situation, as it will be shown below, 
when such an edge illumination of the particle 
appears to be more effective for accumulation of the 
beam light energy inside the particle, scattering the 
pulse train and for obtaining higher intensity values 
(factor B) than, for example, at illumination of the 
particle centre. 

Nonstationary scattering of radiation  
by a spherical particle.  

Spectral approach 

The preceding consideration of light scattering 
by particles concerned the case of illuminating 
particles by a monochromatic wave, when the spatial 
pattern of radiation intensity distribution, diffracted 
by a particle, is stationary. In this section we 
consider a general case of this process, namely, the 
scattering by a spherical particle of the laser pulse, 
whose frequency spectrum has the finite width. This 
results in appearance of both spatial and temporal 
variabilities of optical fields inside and outside the 
particle, as well as to formation of dynamic character 
of the scattering. 

To study the time evolution of electromagnetic 
field at scattering of a spectral-limited radiation 
pulse by a spherical microparticle, we have used the 
results of the nonstationary Mie theory23 consisting 
in the combination of spectral presentation of initial 
radiation and linear theory of diffraction of a plane 
monochromatic light wave by a particle. The original 
nonstationary problem of diffraction of the wide-band 
radiation in this case is reduced to the stationary 
problem of the scattering by a spherical particle of a 
series of monochromatic Fourier harmonics. 
Scattering characteristics of the particle are 
characterized by the function of the spectral response 
Eδ(r; ω), representing the traditional Mie series 
written for all frequencies from the spectrum of the 
initial pulse. 

Now we set the time profile of electric field 
intensity of the incident linearly polarized radiation 

in the harmonic form with the central frequency ω0 
and the slowly varying envelope curve f(t): 

 0( ; ) ( ) ( )e ,i i i tt f t ω

=E r E r   

where t is the time. To calculate the distribution of 
the internal optical field of the particle, using the 
results of the stationary Mie theory, it is necessary 
first to go from time coordinates to spectral 
frequencies, presenting the initial light pulse as its 
Fourier transform: 
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where ℑ is the operator of the time Fourier 
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the initial pulse. Thus, each spectral component is 
formally equivalent to a monochromatic wave with 
the frequency ω and the amplitude, set by Eq. (6). 
The diffraction of such wave by a spherical particle is 
described in terms of the stationary Mie theory and 
results in the following representation, for example, 
of the internal electric field of the particle: 
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Here the function of spectral response of the particle 
is introduced: 
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In this case the refraction coefficient na(ω) and the 
Mie particle parameter xa(ω) should be chosen in 
accordance with the value of the current frequency. 

Finally, the internal electric field of the 
particle, depending on time, is written in the form of 
the convolution from the spectrum of the initial laser 
pulse and the function of spectral response of the 
particle: 

 1

0 0( ; ) ( ) ( ; ) .t E G
−

δ= ℑ ω − ω ω⎡ ⎤⎣ ⎦E r E r  (8) 

Note that in the field of the scattered wave outside 
the particle is expressed in a similar way when 
substituting the spectral response (7) by the 
corresponding series for the external field. 

Laser radiation model. 
Formulation of the problem 

Consider the following problem. Assume that 
the dielectric spherical particle of the radius a0, 
characterized by the refractive index na, is 
illuminated by a spatially-limited laser beam with a 
transverse profile of the field intensity (3) and a 
radius of the focal waist w0. The time dependence of 
the incident radiation is set in the form of a pulse 
train from Np equally spaced frequency-modulated 
pulses, which follow with the time interval T. The 
time profile of the envelope of every pulse in a train 
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is considered to be a Gaussian with the duration tp 
(by a level e–1 of the intensity peak). Thus, we have 
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Here tj = t0 + (j – 1)T, t0 defines the position of 
peak of the first pulse in a train at the time scale, 
and b is the parameter of depth of the linear 
frequency modulation (linear chirping). The 
instantaneous frequency of such radiation within the 
limits of each pulse varies linearly in time following 
the law: ω = ω +

2
0 p( ) / 2 ,t bt t  in this case the 

combination of parameters 2
p( / 2 )b t  by its sense is 

the modulation rate. The chirping radiation is widely 
used in optics and spectroscopy of ultrafast fields 
(see, e.g., Ref. 24), because it enables one to control 
for the time length and spectral loading of the laser 
pulse at its propagation through the dispersion 
medium. 

It should be noted that here we used the model 
of linearly chirped radiation, widely used in scientific 
literature,24 which uses only the frequency chirping 
parameter b. This model considers the pulse length tp 
to be stable independently of the chirping depth. 
Thus, an example of the chirping is a measure of 
broadening of only frequency pulse spectrum but not 
its duration. Without going into details of technical 
aspects for obtaining such a radiation, note that, for 
example, the nonlinear pulse propagation through 
glass fiber at simultaneous manifestation of chromatic 
dispersion of group velocity of light and Kerr self-
focusing corresponds in practice to a similar 
transformation of spectral-time shape of a laser pulse. 
The Kerr effect results in the quasilinear frequency 
wave self-modulation and broadening of its 
spectrum.25 The time pulse compression, 
accompanying this process, can be compensated 
partly or fully by the chromatic fiber dispersion, 
providing for the quasi-permanence of a frequency-
modulated pulse length. 

The Fourier-spectrum of the time profile (9), 
describing the spectral radiation contour, is given by 
the following function: 
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is the envelope of the spectral contour of the whole 

train with the halfwidth Δω = π +
2

p p2 1 ,b t  

proportional to the chirping depth. 
The expression for the spectral radiation 

intensity follows from Eq. (10) and is written as 
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where  
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and the parameter sp = T/tp gives the interpulse 
interval. According to Eq. (11), the spectral contour 
of a pulse train represents a frequency-pulsed 
function, which has the chief maxima, equidistantly 
located along the frequency axis and occurring at 
constructive addition of exponents in Eq. (10). 
Coordinates of the maxima ωm can be found from the 
condition K = 2πm (m = 0, ± 1, ± 2, …), that leads to 
the following relation for the relative frequency 
tuning out of the maxima position 
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Figure 3 shows the spectral intensity profile of a 
pulse train of ten Gaussian time pulses (tp = 1 ps) 
with the phase modulation of different depths b and 
the different interpulse intervals sp. 

The number of pulses in the train was chosen 
arbitrarily, since at another value Np the pattern will 
not change qualitatively. Figure 3 shows that a more 
dense frequency comb of the optical signal spectrum 
corresponds to the increase of the parameter sp. The 
increase of chirping depth b results in the broadening 
of spectral contour throughout the pulse train (the 
increase of Δωp) and more uniform distribution of 
values of spectral intensity main maxima in the 
frequency comb. Actually, the ratio of spectral 
intensity peaks at the frequency of mth side fringe 
and in the contour centre is determined as 
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and, hence, grows with the increase of modulation 
index b. 

For more effective optical excitation of the 
microresonator it is necessary to fulfill the resonance 
condition for a wavelength (frequency) of the 
incident radiation and the particle radius. This is not 
easy to realize in practice, because the spectral width 
of the resonator excited mode can be much less than 
the width of the lasing line. Besides, the use of 
ultrashort pulses with the spectral contour width 
roughly equal to the carrier frequency for pumping a 
microparticle results in multiple excitation of a wide 
range of eigenmodes, frequencies of which fall in the 
radiation contour and neighbour with the required 
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mode, that is undesirable. Figure 3 shows that the 
pulse train has a quasilinear spectrum, that enables 
us to concentrate the radiation energy in the given 
spectral intervals. 
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Fig. 3. Spectral radiation intensity, normalized to the 
maximum value, depending on the relative frequency 
detuning at different time regimes: unchirped monopulse 
(dash lines); pulse train of 10 unchirped pulses at sp = 5(a) 
and 10 (b); pulse train of 10 chirped pulses at sp = 5(a) and 

b = 6 (c). 

 

Thus, the pulse train, when varying the spacing 
of their sequence, presents great potentialities for 
variation of the spectral composition of an optical 
signal as compared with a single pulse. Besides, the 
radiation chirping allows the control for the loading 
of a given frequency spectral interval. These 
arguments have determined the choice of the 
radiation, affecting the particle, in the form (10). 

Discussion of results 

Now we consider the results of numerical 
solution of the problem on the linear nonstationary 
scattering by a spherical microparticle of a train of 
modulated ultrashort laser pulses, presenting in a 
space a narrow light beam. Let, for definiteness, a 
droplet has a0 = 10 μm at the focal beam waist 
w0 = a0/2, and the carrier wave of laser radiation 
λ0 = 800 nm. Under such conditions the water 
refractive index na = 1.33 and, in fact, the water does 
not absorb the radiation.26 The every pulse duration 
in a train was equal to tp = 200 fs (t0 = 4 tp). This 
corresponds to spectral contour width of unchirped 
radiation of about 10 nm, which increased by one 
order of magnitude, when varying b from 0 to 10. In 
calculations, we did not take into account the 
frequency dispersion of the water refractive index 
within the limits of the spectral interval under study. 
In the numerical experiments, a light beam moved 
only along the axis x (ξ0 ≥ 0, η0 = ζ0 = 0) and was 
directed to different zones of a water droplet. 

First, we illustrate the conclusion, drawn 
before, (see Fig. 2) on the effect of the reciprocal 
position of the laser beam and the particle on the 
character of the optical field, formed inside it. 
Figure 4 shows the function of spectral transmission 
of a water droplet 

 ( ) ( ) ( )( )*

; ; ;K δ δω = ω ⋅ ωr E r E r   

at three impact parameters of the incidence of a light 
beam. 
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Fig. 4. The transmission function of water droplet K 

depending on the relative frequency difference δω;− at 
different vertical shifts of the light beam: ξ0 = 0 (1); 0.5 
(2), and 1 (3). 
 

The values of the function of spectral response 
(7) here and further were calculated at a definite 
point inside the particle rm, corresponding to the 
space coordinate of the absolute (in time) intensity 
peak of the optical field. For a water droplet of 
10 μm radius the calculations of the internal field 
profile have shown that the point rm is on the 
principal diameter in the particle shadow hemisphere 
and has the following spherical coordinates: 
rm = (r/a0, θ, ϕ)|m = (0.845; 0.0; 0.0). 
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It follows from Fig. 4 that the central geometry 
of the particle illumination is characterized by a 

weak, practically neutral spectral dependence of the 
transmission function. In this case, the excitation of 
the field resonances does not appear. The transfer of 
the laser beam in the direction of the droplet edge 
leads to a gradual development of the resonance 
structure of the spectral response, which becomes 

more pronounced at ξ0 � 1. The sign “�” here denotes 

the dependence of a precise value of the impact 
parameter ξ0, at which the maximal value of K is 
realized, on the morphology of the particle excited 
resonance mode. As it was shown in Refs. 13 and 27, 
for the optimal tuning to the resonance with the 
increasing number of excited WGMs of the internal 
field, ξ0 must grow. In this paper we do not pursue 
the goal to analyze in detail the behavior of the 
particle transmission function from the geometry of 
its illumination, and, therefore, further all presented 
results refer to the case of the accurate edge radiation 
incidence ξ0 = 1.  

The time profile of the optical field intensity 
B(t) (inhomogeneity factor) at a chosen point rm 
inside a drop in the train field of 15 femtosecond 
laser pulses is given in Fig. 5a. Figure 5b shows in 
relative units the spectral behavior of the 
transmission function of a droplet and the initial 
radiation for this case. 
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Fig. 5. The time dependence of the relative intensity of 
internal optical field B(rm) of water drop (a) and its spectral 
transmission function K (b) at illumination by a train of 
femtosecond pulses with sp = 5.25 and b = 0. The profile of 
spectral radiation intensity is shown by a dash line. 

The pulse repetition frequency in the train is 
specially selected [according to the condition (12)] 
for the resonance excitation by the first main lateral 
fringe of the radiation spectrum with the tuning  

δω;−1 = 2.5 · 10–3 of the eigenmode 3

85TE ,  which 
QR ~ 7 · 103. 

It follows from Fig. 5 that the pulse train 
provides for the resonance character of the radiation 
scattering by particle. This is expressed through the 
increase of the intensity maximum of the internal 
particle field from pulse to pulse by a factor of two 
and the corresponding radiation energy accumulation 
in an excited resonator mode. After completion of the 
train the particle de-excited the stored energy during 
the characteristic lifetime of mode τR = QR/ω1 ~ 3 ps 

and the particle field intensity decreased 
exponentially. Besides, figure 5a shows the intensity 
variations, which are connected with the excitation 
one more eigenmode of the droplet (see Fig. 5b), 

namely, 4
81TE ,  with much lower QR (~102). 

The number of pulses in a train, necessary for 
providing for maximal level of internal field intensity 

{ }max ( , )m m
t

B B t= r during their scattering by the 

particle, is determined by resonance characteristics of 
the excited whispering gallery mode. Figure 6 shows 
the results of investigation of Bm depending on the 
number of pulses, which show that the field intensity 
maximum is at Np = 10÷15 and after that it is not 
changed with the pulse train elongation. 
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Fig. 6. The dependence of maximal value of the function of 
droplet inhomogeneity Bm in the field of laser pulse train on 
their number Np at sp = 5.25 and b = 0 (1); 3 (2). 

 

As it follows from Eq. (11), the characteristic 
width of any of principal maxima of the train 
spectrum is inversely proportional to Np, the 
existence of optimal number of pulses is connected 
with attaining equality between the spectral lobe 
width and the WGM width. The finer is the spectral 
resonance, excited in a particle, the longer should be 
the pulse train under other equal conditions for to 
transmit most effectively the train energy to the 
particle. 

One more problem is connected with the 
influence of the radiation frequency modulation on 
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the magnitude of the attainable level of the optical 
field intensity. The train chirping, as it was noted 
above, widens the spectral contour of the entire pulse 
train Δωp ~ b, which at constant frequency position 

of the spectral maxima ωm increases their relative 
value as compared with the absolute intensity 
maximum at the centre [see Eq. (13)]. More effective 
excitation of the field resonance by the chirping 
radiation is shown in Fig. 6 (curve 2), where at 
b = 3 the field intensity maximum increases by a 
factor of 1.5 as compared with maximum of the 
unmodulated pulse train. 

However, the radiation frequency modulation 
has also a negative effect on the efficiency of the 
field resonance excitation, because at the total 
spectral broadening simultaneously the absolute 
maximum of the lobe intensity decreases. Actually, it 
follows from Eq. (10) that for the first lobe 

 
2 2

2 p 1 0
1 22

( )1
( ) exp .

(1 )1

t
G

bb

⎡ ⎤ω − ω
ω −⎢ ⎥

+⎢ ⎥+ ⎣ ⎦
∼  

This function has its maximum at 

( )= ω − ω −
2 2

1 1 0 p2 1,b t  that gives the value of 

optimal chirping: b1 � 2.3 at experimentally selected 

pulse train parameters. 
The results of calculations of the function Bm(b) 

are shown in Fig. 7. 
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Fig. 7. The intensity maximum of the droplet internal field 
Bm irradiated by the laser pulse train at Np = 15 and 
sp = 5.25, depending on the linear chirping depth b. 

 

It is seen that this dependence has a maximum 
at b = b1. The second, lower maximum is observed at 

b � 5 due to the excitation of the mode 3

85TE ,  as well 

as a series of WGM with a high Q-factor by a wide 
spectral contour of the chirping radiation. 

Conclusion 

Thus, the investigations of nonstationary 
scattering by a transparent spherical particle of a 
train of frequency-modulated femtosecond laser 
pulses, having a spatial configuration in the form of a 
limited narrow beam of the Gaussian transverse 

intensity profile, as well as time dynamics of the 
formation and characteristics of resonance excitation 
of internal optical field of the particle by such 
radiation have made it possible to draw the following 
conclusions: 

1. The efficiency of incident radiation energy 
transfer to intrinsic resonance of a particle with a 
given high Q-factor (WGM), illuminated by a 
spatially-limited focused light beam, depends greatly 
on the combination of such parameters as relative 
pulse length in the trainand the depth of linear 
frequency modulation of each pulse. 

2. The geometry of particle irradiation makes an 
essential effect on the values of relative intensity of 
the inner optical field. The excitation of a weakly 
absorbing spherical particle by a narrow laser beam is 
the most efficient at its focusing to a particle edge, 
because only in this case the excitation of high-
quality WGM becomes possible as opposed to the 
case of the light beam direction to the droplet centre. 
 3. A comparative analysis of time dynamics of 
formation of the inner optical field of the particle 
irradiated by a single pulse or by a laser pulse train 
has shown that the increase of pulses in the train 
results in the variation of time behavior of the inner 
particle field and its peak intensity. At the same 
time, there exist an optimal number of pulses in the 
train, some excess of which does not lead to further 
increase of the intensity peak of the particle inner 
optical field. 
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