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Ways of achieving practical realization of the optimal principles of variation of 
the control constants obtained in Part I of this article are examined. The possibility of 
organizing control of the beam wavefront without the use of gradient methods is dis-
cussed. Principles for varying the control constants in multichannel adaptive systems 
are proposed. 

 
 

1. Let us consider practical ways of realizing 
the optimal principles of varying the control con-
stants suggested in Part I of this article as well as 
some control algorithms distinct from the gradient 
method. It is easy to see that in estimating the qual-
ity of compensation of nonlinear distortions by means 
of functionals of the peak intensity (or equivalent 
functionals, e.g.. functionals of the power) the con-
trol effected by the rule 
 

 (1) 
 

for  = 0/2, is equivalent to adjusting the focusing 
along the x and ó axes with optimal variation of the 
control constant. Consequently, Eq. (1) represents a 
practical way of realizing beam focus control having 
the maximum speed. In general, in the control of the 
wavefront S of a light beam, instead of Eq. (1), we 
shall obtain 
 

 (2) 
 

This algorithm substantially increases the speed of the 
adaptive system during beam focusing in an immobile 
medium, or in the course of a preliminary correction 
of the beam shift in a mobile medium during wave-
front control based on the algorithms belonging to the 
class of gradient methods. The numerical experiments 
performed in Ref, 1 both for optimization of the fo-
cusing of the beam and for optimization of the beam 
wavefront confirm the conclusion reached here. 

If it is difficult to obtain data about the location 
of the receiver. then it becomes advantageous to use 
an algorithm of the form 
 

 (3) 
 

Its convergence, stability, and speed are determined 
by the initial beam power and do not depend on the 

distance to the receiver. Thus, in the course of tuning 
according to the criterion of peak intensity for the 
monotonic regime of adjustment of the optimal pa-
rameters, It is sufficient that the condition 
2/(1 + ) < 1 be fulfilled. 

Another important advantage of control based on 
formula (3) is the small probability of the appearance of 
stochastic regimes of operation of the adaptive system. 

The construction of an algorithm analogous to ei-
ther algorithm (1) or (2) and the realization of the 
optimal principles of varying ( )

1
x

N  (Eqs. (8) and (8) 
in Part I of this article) in the correction of the beam 
center shift in a thick layer of a nonlinear medium is 
a complicated problem which will be solved in the 
near future. Here, we shall consider some possible 
approaches to the construction of such an algorithm. 
Thus, the convergence of the following iteration proc-
ess for x

N  in correcting the beam center shift 
 

 (4) 
 

In the case in which the other control parameters are 
fixed (focusing, etc. ) does not depend explicitly on 
the distance to the receiver, nor on the location of the 
beam center, which is intrinsic to algorithm (7) in 
Part I of the present article. For algorithm (4), the 
exponential dependence of the optimal values of ( )

1
x

N  
on the beam center location are realized automati-
cally, which significantly improves the adaptation 
conditions, in particular, the choice of the optimum 
value of ( )

1
x

N  for algorithm (4), which depends only 

on 2.Nf  That is why the advantage of algorithm (4) in 
comparison with the algorithm in conventional use is 
obvious. However, in correcting the beam shift ac-
cording to algorithm (4) it is necessary that the focus-
ing remain constant while controlling the tilt. If data 
on the maximum radiation intensity at the receiver 



V.A. Trofimov Vol. 3,  No. 1   /January  1990/   Atm. Opt. 63 
 

 

(Jm) are available, then controlling ( )x
N  according to 

the rule 
 

 (5) 
 

and controlling ( )x
N  according to rule (7) in Part I of 

the present article with an optimal choice ( )
1

x
N  

(Eqs. (8) and (8) in Part I of the present article) are 
equivalent (this cam easily be shown if one takes into 
account that 21/m NJ f ). Consequently, algorithm 
(5) is optimal from the viewpoint of the maximum 
speed of reaching the optimal value of ( )x

opt  in the 

class of gradient methods during the correction of the 
beam center shift. 

From a comparison of Eqs. (1)—(5), important 
practical conclusions follow: first, it is advantageous 
to compensate the beam center shift and the focusing 
of the beam onto the receiver separately (see also 
Ref. 2); second, to realize the maximum speed of at-
tainment of the optimal conditions of concentration of 
the light energy on the receiver, it is necessary to 
control the focusing and the wavefront slope of the 
beam according to different algorithms (e.g., accord-
ing to algorithms (2) and (5)). 

It should also be noted that if the optimal prin-
ciples of variation of the control constants are not 
realized, then the iterative process of achieving the 
optimal distribution of S converges (we assume that 
the conditions necessary for this are fulfilled) geometri-
cally with denominator q equal to 1 – c, where ñ is a 
constant, i.e., it converges linearly in q. It is impossible 
to achieve a faster rate of convergence in the class of 
gradient methods, since, in essence, they are simple it-
eration methods for obtaining the roots of the equation 
 

 (6) 
 

To accelerate the attainment of the optimal values of 
beam focusing, wavefront tilt, and other parameters 
(e.g., to converge the corresponding  iteration proc-
esses with denominator q2), it is necessary to resort to 
algorithms that do not belong to the class of gradient 
methods, e.g., to Newton's method for the solution of 
nonlinear equations (Refs. 3 and 4), which has a 
quadratic convergence near the root of the respective 
equation. Application of Newton’s method presup-
poses, in this case, an organization of control accord-
ing to the rule 
 

 (7) 
 

Note that the presence of the modulus around the 
second derivative in Eq. (7) is fundamental owing to 
the specific characteristics of the problem. Analysis 
shows (see Ref. 5) that algorithm (7) possesses a 
number of advantages over gradient methods. 

2. Let us consider the problem of increasing the 
speed of multichannel adaptive systems. As is well 
known, the elastic mirror drives are conventionally 
arranged in such a way that some of them take part in 
beam focusing, others remove astigmatism, still others 
remove coma, etc. This approach is justified for beam 
focusing in a linear medium, or in examining contri-
butions to the efficiency of compensation of various 
aberrations. In the case of a strong nonlinear re-
sponse, it may be more advantageous (from the view-
point of the number of drives), when the same drive 
takes part in the compensation of several types of ab-
erration. In this case, the problem arises of their op-
timal distribution on the mirror, on which the organi-
zation of control in the adaptive system and, ulti-
mately, its speed depend. Thus, for the case of a weak 
mutual influence of the drives. It is possible to organ-
ize their parallel control. However, in a sufficiently 
bad overlapping of the action of separate drives, the 
quality of control decreases since the desired wave-
front of the light beam is not formed. If the action of 
separate drives overlap strongly, the mirror represents 
a system with strong coupling between the control 
channels, and the breakdown of convergence of the 
optimization iteration process in one channel unavoid-
ably affects the convergence of the process in the 
other channels. A comparison of different ways of 
arranging the elastic mirror drives from the viewpoint 
of their mutual overlapping was carried out in Ref. 6. 

It should be emphasized that it is desirable to 
minimize the number of drives on the elastic mirror in 
order to increase the speed of the system. Therefore, it 
may be the case that none of the different ways of 
arranging them that have been suggested, e.g., in 
Ref. 6, ñan be realized owing to an unsufflcient num-
ber of drives for their uniform arrangement over the 
mirror surface. In this situation it is necessary to take 
into account the amplitude distribution of the beam 
and to arrange the drives more densely in the region 
of the maximum intensity, and less densely in the 
beam periphery. Then, the most intense portion of the 
beam will be focused better than for a uniform distri-
bution of the drives on the mirror, which may result 
in a higher concentration of light energy on the re-
ceiver, specifically, in its maximum intensity. In my 
opinion, arrangement of the drives, taking into ac-
count the beam profile, will make it possible to con-
siderably reduce their overall number without any 
significant reduction in the be sun focusing quality. 

In the use of elastic mirrors, it is also advantageous 
to introduce damping. This is effectively achieved by 
introducing constraints on the deviation of the shape of 
the mirror, e.g., from a planar profile.7 It is important 
that a regularization of the adaptation process occurs In 
this case as a result of which the functional being 
minimized becomes convex, while its dependence on the 
parameters being optimized will be single-valued. Some 
increase in the speed of the adaptive system (by ap-
proximately a factor of two) also occurs.7 

Another aspect of controlling elastic (or seg-
mented) mirrors is the following. As numerical ex-
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periments have shown, the speed of attainment of the 
optimal drive perturbations for a constant value (e.g., 
the optimal one from the viewpoint of convergence of 
the control algorithm) of the control constants (let us 
denote it by opt) over each channel depends on the 
location of the drive with respect to the beam center: 
those closer to it attain their optimal value earlier. 
Therefore, to increase the speed of a multichannel 
adaptive system, it is advantageous to perform the 
control over each channel with different constants 

,p opt p     where p is the channel number. Let us 

obtain the dependence of p  on the initial beam 

profile A0(x, y) and on the response function 
p(x, y) of the drives. Towards this end, let us con-
sider the iteration process of optimization of the 
perturbation p of the drives. 

As is known, in elastic mirrors their required is 
created by means of perturbations applied to some 
points on the mirror: 
 

 (8) 
 
where M is the total number of drives. We assume 
that with increase in the drive number the distance 
from it to the beam center does not decrease. Optimi-
zation of p according to the gradient method with 
the purpose of maximizing the chosen criterion J is 
performed according to the rule 
 

 (9) 
 

Making use of the standard way of calculating the 
functional derivative (see, e.g., Ref. 8) by solving the 
equation adjoint to the quasi-optical equation in the 
complex beam amplitude A(L, x, y) it can easily be 
shown that 
 

 
 
  (10) 
 
where IM means that the imaginary part of the inte-
gral is taken, the asterisk on the function  denotes 
the complex conjugate,  is the solution of the ad-
joint equation, and S is defined by Eq. (8). 

From Eq. (10) it follows that with increase in 
the drive number the value of the integral and, conse-
quently, that of the functional derivative varies like 
 

 (11) 
 

and decreases for hyper-Gaussian beams, as the dis-
tance from the beam center to the next drive increases 
resulting in a slowing down of the adaptation process. 
Therefore, in order to equalize the increments over 
each channel, it is necessary to take account in 
Eq. (10) of the value of np: 
 

 (12) 
 

The control constants in the p-channel should be 
multiplied by p = 1/np. In this case, the speeds of 
attainment of the optimal drive perturbations are 
equalized. 

3. Conclusions. It has thus been shown that the 
variation of the control constants over different chan-
nels should be performed according to their own prin-
ciples. Several ways of modernizing the gradient 
method, which make it possible to eliminate many of 
the difficulties associated with the optimization of the 
beam wavefront according to the given algorithm, in 
particular, to eliminate the dependence of its conver-
gence on the distance to the target, the initial beam 
power, and so on, have been considered. 
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