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A numerical implementation of an algorithm for reconstructing a phase front in the 
form of an expansion in a system of orthogonal polynomials from the results of meas-
urements of the partial derivatives of the phase front at the points of the aperture of a 
Hartman sensor is proposed. An example of the implementation of the algorithm using 
for the orthogonal basis Zernike polynomials in a Cartesian coordinate system is given. 

 
 

The main element of adaptive optical systems 
(AOSs) for phase conjugation is the wavefront sen-
sor. With its help the phase is measured at different 
points of the aperture of the optical system, after 
which the measurements are "joined together" and 
the distribution of the phase of the wavefront over 
the entire pupil is formed. Because of the specific 
nature of square-law detection, sensors of the inter-
ference and Hartman types1,2 are most often em-
ployed in optics. Such sensors make it possible to 
measure the phase difference between neighboring 
sections of the aperture of local slopes of the phase 
front, which are proportional to quantities of the 
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 where k is the 

wave number and (x, y) is a function describing 
the distribution of the phase on the aperture. 

There exists an algorithm3,4 for reconstructing the 
phase front from measurements of the partial deriva-
tives at points of the aperture. In this algorithm, iIn 
processing the results of measurements from m by n 
subapertures, a system of (m + 1) by (n + 1) linear 
algebraic equations is solved. A recurrence procedure 
cannot be used to solve this system. For large m and n 
this results in larger amounts of computer time and 
limits the application of the algorithm indicated in 
real-time, while decreasing m and n increases the error 
of the approximation of the phase front. In the last 
few years interest in the application of flexible mirrors 
with response functions close to the orthogonal Zer-
nicke polynomials as phase-front correctors has In-
creased in the technology of adaptive optics.5 Here 
there arises the important problem of calculating on 
modern computers with minimum computer time the 
controlling signals for the mirrors. 

In this paper we examine a method for recon-
structing the phase front in the form of an expansion 
in a system of orthogonal functions based on measure-
ments performed with a sensor of the Hartman type. 

We shall study the following problem. Assume 
that on a rectangular aperture S with the dimensions 
(a, b)  (c, d), consisting of m  n subapertures, the 
Hartman sensor measures the values of the partial de-

rivatives 
( , )i jd x y

dx
 and 

( , )i jd x y

dy
 at the center of 

each subaperture Sij. We give on the intervals (a, b) 
and (c, d) two systems of orthogonal functions {k(x)} 
and {k(y)}, where k = 0, , N, from the space C 
(S), which satisfy the scalar products of the form 
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and differential equations of the form6 
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The distorted phase front can be represented In 
the form3,4 
 

 (4) 
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where 
 

 (5) 
 

 
 

The problem is to synthesize an algorithm for calcu-
lating the coefficients ak an expansion of the form 
(4) from measurements of the partial derivatives of 
the phase front at points of the subaperture. 

We differentiate the expression (4) with respect 
to x and y:  
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Then the values of the partial derivatives of the 
phase front at the points of the aperture can be rep-
resented as 
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We obtain the coefficients ak by minimizing a func-
tional of the form 
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Differentiating the expression (8) with respect 
to a1 and equating the values of partial derivatives 

of the type  0 1

1

( , , ..., )NdQ a a a
da

 to zero, we obtain a 

system of N + 1 linear equations: 
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We introduced the following notation: 
 

 
 

 
 

Taking into account the orthogonality of the de-
rivatives of the polynomials satisfying conditions 
(1), (2), and (3), we write the solution of the system 
(9) in the form 
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In accordance with Rodrigues' formula6 the par-
tial derivatives of orthogonal polynomials can be 
represented by the following relations: 
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where Ak and 1
kA  are constants which depend 

on the normalization and are determined by the 
method presented in Ref. 6. The values of the partial 

derivatives 
 ( , )i jkd x y

dy
 and 

 ( , )i jkd x y

dx
 for all val-

ues of i, j, and k can be calculated beforehand. 
To reconstruct the phase front using Eq. (10) 

P = 3Nmn operations are required. The response 
functions of real mirrors may not satisfy the condi-
tions (2) and (3). Even in this case, however, it is  
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possible to construct an algorithm for reconstructing 
the phase front. 

Assume that k in the expression (4) does not 
satisfy Eqs. (2) and (3) and is a function of the re-
sponse of the flexible mirror. Then, introducing the 
notation 
 

 
 

 
 

the system (9) can be written as 
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or in the matrix form 
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where D is the matrix on the right side of the system 
of linear equations (13) with the elements 
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sought; F is the column vector of the right side of the 
system with the elements 
 

 
 

The solution of the system (14) can be written 
 

 (15) 
 

The matrix D–1 for a AOS is calculated before-
hand, since its elements do not depend on the local 
slopes of the phase front on the subapertures measured 
by a sensor of the Hartman type. Thus the processing 
of the measurements of the phase front in real time 
reduces to calculating the elements F in accordance 
with Eq. (14) and multiplying the matrix D–1 by F. 
The number of calculations required in so doing is 
equal to P1 = N(2N + 3mn – 1). 

Example. Let the response function of the correc-
tor correspond to the polynomials.4 The first polyno-
mial can beneglected, since it describes the important, 
for an AOS, average phase on the aperture.4 Table I 
gives the values of the derivatives of the Zernicke 
polynomials for N = 4, written in a Cartesian coordi-
nate system. 

Then the matrix D assumes the form 
 

 
 

where the symbol  denotes the double sum 

1 1
1 1

( , ),
m n

i j
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  and x1 and ó1 with 1, ,i m  1,j n  

are the given coordinates of the subapertures of the 
Hartman sensor on S. The matrix D is inverted once, 
before the calculations start. Further processing re-
duces to calculating the vector on the right side in ac-
cordance with Eq. (14) and solving the system 
Eq. (15). 
 

TABLE I 
 

 
 

The controlling programs implementing the algo-
rithms (10) and (15) were written in the PL-1 lan-
guage for the ES series computers. 

Conclusions. In choosing the response functions 
of flexible mirrors the preference must be given to 
functions whose derivatives satisfy the conditions of 
orthogonality (2) and (3) or functions that are close to 
them. For such mirrors the volume of the calculations 
is reduced to a minimum. If this is impossible, then 
the measurements must be processed in accordance 
with Eq. (15). In this case the volume of calculations 
will also be reduced compared with the well-known 
algorithms,3,4 since to reconstruct the phase front by 
the methods proposed in Refs. 3 and 4 with n = m, for 
example, not less than 2/3(n + 1)6 operations is re-
quired. The proposed algorithms can be easily imple-
mented on a computer. The speed of operations of the 
AOS can be further increased by using a parallel com-
putational scheme. For flexible mirrors with response 
functions close to the Zernicke basis the matrix D–1 is 
symmetric. This makes it unnecessary to calculate and 
store in the computer memory all (N + l)2 elements of 
the matrix; only N(N + 1)/2 elements need be stored. 
 

REFERENCES 
 

1. M.P. Rimmer, Appl. Optics 13, No. 3, 623 (1974). 
2. M. Yellin, IOSA 65, No. 2, 271 (1975). 
3. N.D. Ustinov, M.N. Matveev, and V.V. Pro-
topopov, Methods for Processing of Optical Fields in 
Laser Sensing [in Russian], Nauka, Moscow (1983), 
272 pp. 
4. E.A. Vitrichenko, ed., Adaptive Optics [Russian 
translation], Mir, Moscow (1980), 456 pp. 
5. M.A. Vorontsov, A.V. Kudryashov, V.V. Samarkin, 
et al., Opt. Atm. 1, No. 6, 118–120 (1988). 
6. A.F. Nikiforov and V.V. Uvarov, Foundations of 
the Theory of Special Functions [in Russian], 
Nauka, Moscow (1974), 303 pp. 
 


