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The spectral intervals in which the absorption is due to the line wings are impor-
tant for atmospheric optics applications. In this connection, the currently popular con-
cept of the essential role played by line mixing in shaping the spectral line wing con-
tour is discussed it is shown that the arguments offered by some authors to support 
this idea are unconvincing. 

 
 

1. INTRODUCTION 
 

The effect referred to as spectral line mixing or 
quantum state interference is well known in spec-
troscopy. Major contributions to the development of 
the relevant theory were made by Fano1 and Zwan-
zig2 followed by other authors3–14 (for experimental 
studies see Refs. 15–17). It is important that these 
authors considered the frequency detuning  = | –
0| ` , where  is the line half-width,  is the field 
frequency, and 0 is the quantum transition fre-
quency (the spectral line center). 

However, papers18–33 have recently appeared 
that claim that this effect is a decisive factor for 
shaping the vibrational-rotational spectral line wings 
in gases. In fact, this implies an actual revision of 
the problem. A critical analysis of this approach and 
am explanation of its methodical inconsistency is the 
subject of the present work. We may add that in the 
"resonance age" certain subtleties inherent in the 
problem have been the cause of misconceptions and 
apparent paradoxes. Brilliant discussions of examples 
of this kind can be found in Refs. 34–36. 

The significance of the problem is predeter-
mined by the well-known remarkable role of the 
band and line wings in atmospheric optics and its 
applications.37 

 
2. TERMS AND DEFINITIONS 

 

We will discuss the "conventional" fore of the 
absorption coefflcient1,7,8,38–40 
 

 (1) 
 

The quotation marks will be removed in § 8. We 
also mean to say that Eq. (1) is the most standard 
solution of the most standard problem of the prob-
ability of single-photon processes. 

Here M is the dipole moment operator of an "ac-
tive” (interacting with the field) molecule with Ham-

iltonian H0 and density matrix  (Tr is the trace); 
()av denotes averaging over the perturbing molecules 
and centers-of-mass motions; S is the evolution opera-
tor of the entire system; t is time. The line center 
nm = ((H0)n – (H0)m)/ħ, and (H0)n is the eigenvalue 
of H0 with quantum number n. It follows from Eq. (1) 
that 
 

 (2) 
 

and we may refer to ênm as the absorption coefficient 
of the line resulting from the quantum transition 
m – n. It should be noted that the summation over 
the lines in Eq. (2) occurs whether the interference 
contribution is great or small, the latter affecting 
only the form of ênm. 

Equation (1) is beautifully simplified by general 
procedures1 and the semiclassical representation 
method.3 

Evaluating 
0

(...)dt


  of the operator functions 

yields10: 
 

 (3) 
 

The symbol  denotes the superoperators; 
ˆy Fx  with the usual operators x and ó implies the 

following expression for their matrix elements: 
 

 (4) 
 

The set of numbers Fn,m,nm determines ˆ.F  In Eq. (3) 

ћ0 0
ˆ 1/ [ , ]L x H x  and ̂  is the relaxation superop-

erator. Its explicit form is rather cumbersome (see 
Ref. 1) and we will comment on some general points. 

If ̂  is diagonal (nm,nm = nmnnmm), the in-
version of the resolvent in Eq. (3) is trivial: 
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Here the line intensity nmS  depends solely on the 

characteristics of the transition m  n; fnm is the 
dispersion contour with linewidth Renm and line shift 
Imnm. The situation is found to change drastically for 
 

 (5) 
 

Deviations from fnm occur even in the vicinity of 
nm; nmS  is replaced by intensity combinations (in-
terference!), i.e., the “isolation" of the terms in 
Eq. (2) no longer exists. Therefore, the claim is 
made that Eq. (5) is the condition for line mixing 
that emphasizes its quantum origin. 

Another important point is the dependence of 
nm,nm on . Hence, fnm is by no means the conven-
tional dispersion contour with constant half-width 
and center shift. It does have a conventional form 

( )d
nf  but only near the line center where  = nm. 

In the projection operator method2 
ê()  (1/) TrMg, and g is the formal solution of 
the kinetic equation. (There are a lot of kinetic 
equations that have been derived heuristically, 
though, as a rule, they are valid for the resonant case): 
 

 (6) 
 

where ˆ ( )   is the relaxation superoperator 
 

 
 

 (7) 
 

 
 

P̂  is the projection operator; ћˆ (1/ ) [ , ];Lx H x    

H  is the total Hamiltonian; U is the Coulomb energy 
of the intermolecular interaction; and in ()av the 
density matrix of the "buffer" (perturbing) molecule is 
written explicitly. Using the transformation of inte-
gral (7) as in Ref. 1 and the recipes of dealing with 
resolvent operators given in Ref. 7 it can be rigorously 
proved that 
 

 (9) 
 

with all the ensuing consequences. 
It is a fundamental fact (we would like to call it 

"Fano's theorem") that because of Eq. (9) ̂  as well 
as ̂  depends only on the T matrix. Figure 1 is remi-
niscent of its definition. The dynamic problem of col-
liding molecules appears to be eliminated (for exam-
ple, there is no need to compute the "loops" in Fig. 1) 
because “stationary" procedures for computing T that 
are closely related to its asymptotic sense are 
known.44–46 

However, on the  other hand, any attempt to 
calculate  in a straightforward way using Eqs. (9) 

and (7) (for example, upon introducing the classical 
center-of-mass motion, which is evidently a simplifi-
cation) would immediately thrust us back to the 
dynamic problem since ˆ ˆexp( ) (1 )it P L    is, in fact, 

S(t) from Eq. (1), and T  S(). Natural questions 
then arise: what is Eq. (6) for? Why then in spite of 
Fano’s theorem is the dynamic approach adopted 
instead of the asymptotic problem for T when con-
sidering the line wings? 
 

 
 

FIG. 1. Trajectory of relative center-of-mass mo-
tion of two molecules interacting via the Cou-
lomb energy U. in and out are the wave func-
tions of the initial and final states of the system. 
out = Tin,, where T is the scattering matrix. 

 
The solution of this riddle is related to a unique 

peculiarity of scattering theory,47,48 viz. the feasibil-
ity of retrieving the "near- field" (the total solution) 
from the "wave zone” (the asymptotic solution), see 
Fig. 1. The structure 
 

 (10) 
 

adequately reveals this fact. Here (1)̂  (see Eq. (11)) 
is indeed T, and (2)̂  represents the above-mentioned 
"near-field-wave zone" relation-ship; (2)̂  is a rather 
complicated contour integral of the function contain-
ing the solution of the Lippman-Schwinger equation, 
i.e., (2)̂  is also expressed in terms of T. 

Further, the matrix elements of ̂   are propor-
tional to ()2, i.e., (2)̂  predominates at large fre-
quency detunings. This case implies the “near field," 
and it is simpler to deal with Eq. (7) than to take a 
roundabout way through the “wave zone" and the 
integral of (2)̂ . In the limit  – 0, (2)̂  in Eq. (10) 
can be neglected and at resonance the following rela-
tion, popular in many “resonance" calculations, is 
valid: 
 

 (11) 
 
with respect to nm. 
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FIG. 2. Matrix elements of the relaxation super-
operator ̂  vs frequency detuning .  

1 — (1) ,  2 — (2) ,  ˆ ˆ,i    ...  is the norm 

operator,  is the line half-width,  is the lower 
limit of applicability for analytical perturbation 
theory. The plateau of curve 1 corresponds to the 
constant from Eq. (11). 

 

A more thorough analysis leads to the curves 
shown in Fig. 2. It is most simple to use the semi-
classical representation for (1) (1)ˆ ˆ( )i     and 

(2) (2)ˆ ˆ( )i     from Ref. 40. As a result it becomes 
clear that the roles of the terms in Eq. (10) are en-
tirely different: (2)̂  and (1)̂  are responsible for the 
line center, while (2)̂  and (2)̂  govern the line wings. 
The question is which curves are implied rather than 
what is the asymptotic limit of each curve. Therefore, 
the methods and criteria valid for the line center can-
not be extended to include the line wings. 

Unfortunately, the authors who have dealt with 
the general aspects of the subject sometimes prefer 
heuristic considerations to exact results similar to 
those mentioned above. For example, passing from T 
to the dynamic problem or the necessity of calculat-
ing the nondiagonal elements nm,nm, which are 
purely technical problems from the standpoint of 
Eqs. (3)–(9). nearly grow into "physical concepts”. 

We believe that it is the heuristic approach 
which is behind the inadequacy of the arguments in 
favor of ascribing a great significance to line mixing 
In the explanation of the line wing shape. For the 
sake of convenience these arguments will be divided 
into groups though in Refs. 18–33 they can be found 
in different combinations. 
 

3. ANALYTICAL PERTURBATION THEORY. 
FIRST CROUP OF ARGUMENTS 

 

The following relations are very popular in the 
line mixing-line wing problem: 19,20,22–30 
 

 
 (12) 

 
 

where nm, nm are the line-width and the line center. 
Two points are worth emphasizing. First, 

Eq. (12) is derived in first-order analytical perturba-
tion theory when the resolvent operator is inverted.49,50 
Second, the dependence of ̂  on  is ignored (con-
dition (11) is used), in other words (1)ˆ ˆ    (see 
Eq. (10), and Anm = const as in Eq. (11)). 

Now condition (5) allows us to regard Eq. (12) 
as the evidence that interference is a line wing ef-
fect. Indeed, Anm  0 only by virtue of Eq. (5); fur-
thermore, the line contour is dispersive ( ( )d

nmf ) in the 

line center, and the deviations from ( )d
nmf  increase 

with frequency detuning. Moreover, the terms in 
Eq. (12) become negative sooner or later. I. e., the 
interference comes to play a dramatic role: separate 
lines (see the discussion of Eq. (2)) contribute to a 
decrease of ê() rather than increasing it (!?). Note 
that, as follows from Eqs. (1) and (2), ênm > 0.40 

The discussion of Eq. (12) should start with the 
remark that the validity conditions for the analytical 
perturbation theory51,52 applied to the operator in-
version in Eq. (3) lead to the point  >  in Fig. 2. 
It is necessary that the condition  >  be fulfilled 
and no other lines be centered within the line-width. 
A barely passing glance at Fig. 2 will suffice to see 
the obvious incompatibility of the first and second 
points mentioned after Eq. (12) which are claimed 
to justify the importance of line mixing. 

The structure of Eq. (12) is certainly quite evi-
dent and some authors (see, e. g., Refs. 28 and 30) 
speak about the collision approximation (11) in the 
perturbation theory for inverting the resolvent. 
However, the problem is that these things are incon-
gruous: the collision approximation is associated 
with resonance (see Ref. 35 for a comprehensive 
treatment) and implies a special calculating tech-
nique3,7,9–14 for ê() in Eq. (3). 

The analytical perturbation theory is undoubtedly 
valid for  >  > , yet it follows from the above 
that we are to use Eq. (2) in Fig. 2 instead of Eq. (1). 
Therefore, the following substitutions are to be made 
in Eq. (12): nm –  and (2)

, ,nm nm  (2)
, ,nm n m nm n m       in 

Anm. Then referring to the role of line mixing the 
"new”  and A will have to be compared. As shown in 
Ref. 40 for the case of large , it is necessary to es-
timate the parameter . 
 

 (13) 
 

The notation of Eq. (13) is elucidated by Fig. 3; 
ћ 02 / ,v v M  


 M is the reduced mass; 0 (in s–1) 

is the level separation for the “active” molecule; 
R = (/0)

1/a; U(R)/ħ = /Ra is the expression for 
the quantum potential (with parameters  and a), t* is 
the duration of the collision,  is the inelastic scatter-
ing (A – B) cross section, s = r2; and r is the molecu-
lar “radius.“ 
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The "nonresonant interference” (the term em-
phasizes the transition from Eq. (1) to Eq. (2) in 
Fig. 2) is essential for  p 1, and vice versa. To be 
sure, the condition  p  is to be examined first. 
The estimates show  that  ` 1 is "almost always” 
the case, at least  for atmospheric gases and the ex-
perimental data available. In other words, the inter-
ference cannot be critical for the wing shape. To be 
precise, we have to add "at low pressures P“: since 
  p the increase of P (for example in going to liq-
uids) at a given  would mean a reversion to  the 
resonance case. A possible exception is the Q-branch 
lines (see the measurements in Refs. 20, 23–25, 58). 
 

 
 

FIG. 3. Diagram of the relative motion of cen-
ter of mass. The velocity of the ’’jump’’ v has 
only a radial component. 

 
4. THE "LARGE FREQUENCY DETUNING 
ASYMPTOTICS AND SOME EXAMPLES 

 
The far line wings have been considered in de-

tail elsewhere.39,40,53 Investigated there was the 
asymptotic behavior of functions of type (2) in 
Fig. 2. The nontrivial temperature and frequency 
dependence of the absorption coefficient and the 
physics involved were also discussed. It was 
shown40,53–57 that the theory was capable of inter-
preting the experimental data and predicted certain 
new effects inherent in the line wings. Some of 
them were detected in experiments. Those results 
left no place for line mixing as an appreciable ef-
fect in the line wing problem. Now we will com-
ment on some relevant examples. 

In the “large " asymptotic limit the inter-
ference correction reduces40 to the substitution of 

(1 )nm nmS    by ,nmS  which yields 
* ( )nm nm nm nmA       in Eq. (12) after reducing it 

to the analogous form. This value can be readily 
estimated, for example, using the data of Ref. 29. 
Figure 4 is of great significance here. As the figure 
shows, there are important quantitative differences 
here with a very similar qualitative behavior. The 
latter merely reflects the fact that the values Anm 
and nm result from the perturbation theory, but on 
going from curve (1) to curve (2) in Fig. 2 the 
small parameter (13) comes to the fore. 
 

1987

 
à 
 

1986

 
á 

 

FIG. 4. Parameters taking into account interfer-
ence in the case of ÑÎ, 1

1 1
1

(1 ) ,к S f    m is 

the rotational quantum number:  
a) value of 1 from Ref. 29; f  f(d), T = 292 K, 
T = 173 K (solid line);  
b) values of 1 from Ref. 40. f  fwing; T = 300 K 
(solid line), T = 100 K (dashed line). 

 

 
à 

 
á 

FIG. 5. Absorption coefficient of CO2 broadened 
by for 2387.62 cm–1 at different temperatures and 
pressures; points —experiment26, 1988; 1 — ê(d): 
1 — calculation26; 3 — calculation according to 
line wing theory with line shape from Ref. 74, 
1982. a) T = 296 K; b) T = 370 K. 
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The data in Fig. 5 are regarded by the authors 
of Ref. 26 as a considerable success of Eq. (12) as 
compared to the dispersive contour (Anm = 0 in 
Eq. (12)). However, curve (3) shows that the "large 
" asymptotics is more successful in calculating the 
absorption coefficient. 

Figure 6 is also evidence of this fact. The line 
mixing scheme fails to reproduce the experimental 
data even by varying the parameters of the intermo-
lecular interaction in the Gibbs function. At the 
same time the calculation by the formulas from 
Ref. 40 is rather convincing and, what is most im-
portant, there appears a potential with parameters 
obtained from thermodynamic measurements. 
 

 
 

FIG. 6. CO2–Ar absorption coefficient in the 
wing of the 4.3 m – band of CO2 at T = 296 K. 
Points—experiment, 1 — dispersion line shape, 2 
and 3 — calculation30 with different potentials, 4 
— calculation74 according to the line wing theory. 

 
Still more significant is Fig. 7, where the points 

correspond to spectral microwindows, i. e., intervals 
between the lines. Curves 1 and 2 were obtained 
within the framework of a consistent treatment of line 
mixing as a decisive factor. Importantly, the curves 
turned out to be universal, i.e., independent of the 
perturbing species. But the experimental data by no 
means confirm that prognosis. Curve (3) constructed 
using Eq. (12) has the wrong asymptotic limit: instead 
of the natural (and experimentally verified) 
 

 
 
the authors of Ref. 29 obtained  = 0.1, calculating 
the resolvent by Eq. (11) and employing rather a 
rough procedure59 for T. It becomes obvious after 
Section 3 that the nonsense   0 results from the 
extrapolation of (1) to the forbidden zone in Fig. 2. 

The classical part of the problem dominates in 
the "large  “ asymptotic limit: the line wing is 
formed as a result of collisions of the molecules as 
small distances, where the Gibbs exponent is differ-
ent from unity. The same conclusions were arrived at 
in Refs. 60 and 61, which is expressly evidenced by 
Fig. 8 but with initial expression (3). 
 

  
à 

  
á 

FIG. 7. Deviation of the CO2 absorption coeffi-
cient from that calculated with dispersion line 
shape for different per tubing gases at T = 78 K. 
Experiment18: 4 — CO–N2, 5 — CO–H2,  
6 — CO–NBe, 6 — CO– He;  
a) 1, 2 — calculation18 with varying degrees of 
account of interference; 3 — calculation29 using 
perturbation theory to account for interference: 
b) curves — calculation by line wing theory.40,57 

 
We would like to draw the reader’s attention to 

the dates cited in Figs. 4, 6, and 8. Probably they 
can be regarded as a variation of the theme: "The 
new is the long forgotten old". Another illustration 
is Fig. 9. and in Refs. 39 and 75 the calculated 
points were obtained nearly ab initio. It should be 
added that the authors of some recent papers (e.g., 
Refs. 28–30, 60, and 61) have re-derived the rela-
tions from Ref. 39, and some conclusions concerning 
the role of the intermolecular interaction potential in 
the line wing problem forming the ideological con-
tent of Refs. 39 and 40, were made once again in 
Refs. 18, 31, 32, 60, 61. 

Continuing on this theme, note that in a recent 
paper Hartmann reliably approximates his measure-
ments in the 4.3 m band of CO2 by the empirical line 
shape from Ref. 62, and the latter contour agrees 
fairly well with the “large " asymptotic limit (see 
Refs. 54 and 55). The measurements in Ref. 27 were  
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made for large pressures (P  1–77 atm), and it turns 
out that the discrepancies between the measured 
values and the calculations based on Eq. (12), them-
selves not small (up to an order of magnitude), tend 
to increase with increasing P. This fact is at least 
worth heeding because the entire concept of line 
mixing states quite the opposite. 

Recently, attempts have been made to go beyond 
the limits of Eq. (12), to take into consideration the 
frequency dependence of the relaxation, to use asymp-
totic ideas. However, they cannot possibly be consid-
ered to be successful when compared to the already 
developed "large  " asymptotics. (Some details of 
Refs. 20, 60, and 61 have been mentioned above). 
 

 
 

FIG. 8. Broadening parameter M̂d 61 and func-

tion F(R)40 (  R–a) determining the tempera-
ture and pressure dependences of the H2O absorp-
tion coefficient in the case of self-broadening;  
1 — T = 296 K, 2 — T = 430 K. 

 

The central point in Ref. 28 was the “solution" 
g = exp (/iħ)  U(t0) for the evolution operator g 
of the Schrödinger equation for two colliding mole-
cules; U(t0) is the potential at the time t0, which is 
to be interpreted as "the time center of the colli-
sion”. Direct substitution readily shows how far this 
solution is from the truth, and references to the 
structure of the relations where g appears will not 
save the day. It is clear, for example, that large s 
create prerequisites for an asymptotic evaluation of 
the integral in Eq. (11), but the stationary point 
will correspond to the law of conservation of energy 
for the photon absorption and will therefore depend 
on . Hence the arbitrary t0 cannot be used instead 
of the stationary value as is done in Ref. 28. 

 

 
 

FIG. 9. Experimental H2O absorption coefficient 
obtained by Burch (see Ref. 61): x — H2O– H2O, 
+ — H2Î–N2. Calculation:61 □ — H2O–H2O, 
 — H2O–N2;  – calculation for the case of 
H2O–N2 by the line wing theory75. T = 296 K. 

 
The approach of Refs. 60 and 61 also seems 

close to the “large " asymptotic approach, viz., 
the nondiagonal elements of ̂  are ignored ( p ) 
under the resolvent inversions; to tell the truth, the 
author of Refs. 60 and 61 confines himself to general 
considerations and a parameter of type (13) does not 
appear. However, this attempt to extend this idea to 
the calculation of the matrix elements Ô cannot be 
recognized as successful. Actually, 

ˆ ˆ ˆIm lim ( )L L i L


      (see Eqs. (7) and (8) for no-

tation) will become a numerical -function only in 
the total Hamiltonian eigenfunction representation. 
The substitution of the eigenvalues of U for the ar-
gument, as is done in Refs. 60 and 61, naturally 
eliminates the Schrödinger equation problem, but 
this action is not any better them the "solution" in 
Ref. 28. It is worthwhile to note that an indispensa-
ble condition for (3) is the factorization of the den-
sity matrix, and its straightforward procedure60,61 even 
with violation of hermiticity must be substantiated. 
 

5. SUM RULES. SECOND GROUP OF ARGU-
MENTS 

 
Let us return to the discussion of the arguments 

underlying the line mixing-line wings concept. An-
other group of arguments is associated with sum 
rules, i.e., with the relations of the type (see 
Eqs. (7), (9), and (4)) 
 

 
 

 (14) 
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Here, f is an operator which is by no means arbi-
trary, and * denotes the Hermitian conjugate 

The central idea looks very attractive: Eqs. (14) 
are claimed to be equations for the matrix elements 
of ̂ (or ̂ , see Eqs. (9)), and those needed to com-
plete the system are constructed on the basis of 
model considerations (see Refs. 18, 28–32, 63). Thus 
the most complicated calculational problem of the 
relaxation superoperator is avoided. 

Some specific expressions of type (14) have been 
found for the resonance case.29,36 Bearing in mind, 
however, the idea formulated above, we need to be 
interested in more general questions, such as whether 
Eq. (14) actually exists. If "yes", then what does it 
mean? 

If in search of the answer we return to the exact 
equation (7) with L̂  on the left, look at Eq. (8), 
take into account that U is only a function of its 
arguments, it becomes clear that there is a condition 
equivalent to Eq. (14) (see Eq. (4)): 
 

 (15) 
 

Íåãå W is the subspace of ordinary functions (the 
multiplication operators) in the operator space. In 
the language of linear algebra Eq. (15) implies 
that W is the kernel of the linear transformation 
ˆ  (Eq. (14) is this kind of transformation). It is 
well known in linear algebra64,65 that the linear 
transformation can be retrieved from the orthogo-
nal complement to the kernel. The existence of the 
kernel can only suggest the idea of a convenient 
basis, but the kernel is trivial in our case. Actu-
ally, it is at this point where an underwater rock is 
hidden: Eq. (14) cannot be interpreted as an equa-
tion for nm,nm. Eqs. (14) and (15) must be ful-
filled automatically no matter how ̂ (model, nu-
merical, etc.) is constructed. For example, this is 
similar to the case of the scattering matrix whose 
unitarity has to always be verified when develop-
ing the calculating technique for T. However, the 
unitarity conditions themselves do not appear as 
additional equations.66 

The above implies that upon writing ˆˆˆ L A �  

one can think of a model for ˆ.A  But one cannot 

exclude L̂ and adjust the parameters of Â  to satisfy 
Eq. (14). In essence, recalling the derivation of 
Eq. (15), the triviality of the question becomes read-
ily understood. Indeed, what can be said about un-
known function  from the known f, if we only have 
the "equation" f = f? Just nothing. But Eq. (14) 
is the very equation of that type in implicit form. 

Generally speaking, the structure of Eq. (7) with 
the operator L̂  on the left is far from fortuitous — it 
ensures the normalization of the density matrix. There 
are variants where L̂  is on the right, which provides 
"projection" onto the dynamic subsystem.2,67 
 

6. SUBTLETIES OF THE KINETIC EQUATIONS. 
THIRD GROUP OF ARGUMENTS 

 
The essence of the arguments in Refs. 18, 31 

and 32 lies in the conviction that the significance of 
line mixing can be declared at a theorem level, pro-
vided one proceeds from Eq. (2) to the equation for 
the superoperators. It is certainly to be added that 
there seems to be nothing to prevent the transforma-
tion of such conclusions into an "extremist" state-
ment about the importance of interference "under 
any conditions". (Then the two-level approximation 
so popular in nonlinear spectroscopy will prove to be 
an out law). 

If we digress from mathematical details that are 
immaterial at this point, the idea will be as follows. 
Suppose we succeed in writing the equation 
 

 (16) 
 
for the operator (!) Q (for example, g in Eq. (6) is 
the Fourier transform of Q). Assume also that we 
notice the existence of ̂  in the expression 
 

 (17) 
 
Then it appears quite natural, by virtue of Eqs. (16) 
and (17), to attempt to construct an equation for 
ˆ ( )t  

 

 (18) 
 

with an appropriate relaxation operator ˆ .N  As stated 
in Refs. 18, 31, 32, it is Eq. (18) which allows 
Eq. (5), ( ),d

nmf  Eq. (14), etc. to be used efficiently. 
Generally speaking, passing from Eq. (16) to 

Eq. (18) via Eq. (17) is a step of principle. In the 
language of functional analysis we cam speak of a 
higher "level of abstraction" of the problem. (Say, 
the transition from equations with functions to op-
erator equations, e.g., to the evolution operator in 
quantum mechanics, or from operator equations to 
superoperator equations). Certainly, one should fol-
low the relevant rules.68,69 These read: the transition 
from Eq. (16) to Eq. (18) is possible if and only if 
the domain of definition and the range of values for 
 coincide; i.e., 2 3ˆ ˆ ˆ, , , ...    must have the same 
domain of definition. 

The case under study can be explained as follows. 
To find the domain of definition for F̂ in Eq. (4) we 
have to select all xs for which the sum exists. Region I 
in Fig. 10 results, with a shaded part that is self-
mapped. The remaining x are transformed by Eq. (4)  
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into region II. Here the sum (4) already diverges and 
a suitable method of generalized summation has to 
be resorted to.70 Then similar considerations yield 
region III and we have to use a more generalized 
summation for which the procedure employed to ob-
tain region II is a particular case. Figure 10 assumes 
that region III is self-mapped. Surely, all the proce-
dures are but a trivial realization of the analytic 
continuation principle71 in constructing mathemati-
cal objects. 
 

 
 

FIG. 10. Range of function for F. I — domain 
of ordinary summation; II, III — domains of 
generalized summation. 

 

In the physical problem of the absorption coef-
ficient there appear, of course, functions 
(t) = S(t)n (n are the eigenfunctions of H0). The 
chain (t) – S – Q leads to Eq. (16), and, should 
we construct a sequence similar to Fig. 10, it would 
terminate as early as region I. For unitary S, the 
functions n(t) form the same space of quadrat 
leally integrable functions as n. Therefore, Eq. (16) 
can be obtained by direct differentiation of the defi-
nition for Q. 

It is assumed in Refs. 18, 31, 32 that the same is 
true for ̂  from Eq. (17). However, for ̂  one has to 
construct a "matreshka" of Fig. 10 because the struc-
ture of ̂  falls to provide the convergence of sum 

2ˆ ,x  even if ˆ x  converges. Therefore it is necessary 
to proceed to the generalized summation, i.e., a proper 
redefinition of ˆ .  But then, in differentiating with 
respect to t, additional terms appear in Eq. (18) that 
radically change the form of the equation. 

The fact that the mathematical structure of equa-
tions of type (18) in Refs. 18, 31, 32 is at least ques-
tionable is evidenced by the following case: there are 
L̂ s  on the right and on the left of ˆ .N  Multiplying 

Eq. (18) by the basis function ( )j W   and applying 
Eq. (15) yields a system of equations for nm,nm which 
is independent of relaxation(?!). Of still greater sig-
nificance is the following fact: the solution of Eq. (18) 
is the resolvent that does not coincide (?!) with the 
exact result (3). 
 

7. NUMERICAL COMPARISONS.  
FOURTH GROUP OF ARGUMENTS 

 

We will assume that the reader has come to be-
lieve in all the foregoing mathematical "games." But 

then a question is sure to arise that stresses the para-
doxical nature of the situation: why do the criticized 
views lead to formulas, which, granted, only in certain 
cases, fit the experimental data, but do it more than 
Just passably (paradox 1). 

The variant of Ref. 18 is most noteworthy. It 
contains the simplest model description of relaxation 
(see the discussion of Eq. (14)) and gives the follow-
ing expression for  (see Fig. 7 for the definition) 
 

(19) 

 

Here 0 ,nm nm nm
nm

S S S   .nm nm      Another vari-

ant is based on Eqs. (12) for  with a model or nu-
merical construction of  (making use of Eq. (11)). 
19,25–29,63 Again it is established that the calculations 
give a fairly satisfactory fit to the experimental data 
and coincide with the results obtained from Eq. (19). 
Interestingly, these results are but slightly dependent 
on the way T is calculated in (11). This is "paradox-2” 
and in the opinion of the authors of Refs. 19, 28, and 
29 also works on the side of the following version: line 
mixing is such a critical factor that it is sufficient to 
account for it any way possible. We will discuss only 
the coincidence of Eq. (12) with Eq. (19) and "para-
dox-2," leaving the resolution of the main question till 
Section 9. 

To begin with, it should be noted that spectral 
microwindows of CO2 and CO are meant. Direct 
evaluations show that it is possible to confine our-
selves to only two lines in immediate proximity to 
. Certainly, realistic elements of matrix T should 
be used — these mean the transition probability. 
The molecular collisions are capable of initiating a 
transition only between closely separated rotational 
states. Of course, the unitarity of T yields 
 

 (20) 
 

Finally, all the examples refer to linear molecules and 
imply the quantum problem of the rigid rotor. The 
rest is a matter of computations. In the above-
mentioned circumstances Eqs. (19) and (12) lead to 
the same result. Therefore in § 9 we will deal only 
with Eq. (19). 

The role of Eqs. (20) is most noteworthy. These 
equations play the part of "sum rules" and, as such, 
make it possible to express the combinations of 
nondiagonal Tnm in (11) through the line half-width. 
The results of the calculation of T are thereby 
smoothed out, which explains "paradox-2". 
 

8. RELATIONS BETWEEN ABSORPTION 
COEFFICIENTS OF SEPARATE LINES 

 

First let us return to relation (1). Rather subtle 
considerations show that it does not satisfy "first 
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principles". To avoid the trouble while deriving the 
expression for the absorption coefficient, the long-
wave approximation for the centers of mass has to be 
abandoned. Then  
 

 
(21) 

 

where 0GП exp ,i к r
c
   

 

 
 0к


 is Poynting’s vector 

of the external field, normalized to  unit magnitude, 
and the coordinates of r


are the center-of-mass coor-

dinates of the "active" molecule. 
The formal consequence of Eq. (21) is expres-

sions of the form 
 

 (22) 
 
with the terms from Eq. (2) and known B1; in par-
ticular 
 

 
 (23) 
 

where p


is the center-of-mass momentum operator. 
Actually, it is Eqs. (22) that should be referred to as 
"the sum rules" rather than the trivial Eqs. (14) 
since the commutation of U and M is important in 
deriving Eqs. (22). This very equation is an effective 
application of [U, Ml = 0. 

Quantity (23) is calculated in a straightforward 
manner, and 
 

 (24) 
 
with 
 

 (25) 
 
depending on the values contained in . 

The importance of Eqs. (22) and (24) for the 
questions at hand becomes clear as the result of one 
Important circumstance. For small frequency detun-
ings Eqs. (1) and (21) are practically indistinguish-
able. However, setting  = 1 in relation (21) from 
the very beginning and re-deriving Eqs. (22) gives 
the relation B1 = 0, which contradicts result (25). 
This "noncommutativity" emphasizes the fundamen-
tal importance of relation (21) and its consequences 
(22) and (24). 

It should be noted that ( )d
nmf is obtained in 

Eq. (24) for any variant — with the assumed inter-

ference or without it. In essence, 1 ( )( )
nm

d
nm nmf     are 

terms from the refractive index, and their appearance 
is far from accidental: Re in Eq. (23) turns into Im 
because of ,R


 whereas the absorption coefficient and 

the refractive index are the imaginary and real parts 
of the complex permittivity. 

Finally, according to the model of Ref. 40, for 
small frequency detunings  = (2l/)–1, where  is 
the wavelength of the light, l is the distance at 
which the relaxation of an "active" molecule occurs 
after the absorption of a quantum, and  is the time 
when the molecule ceases to remember its initial 
velocity. For the same small , within the frame-
work of the strong collision model (see Ref. 72)  is 
equal to the time between collisions and is propor-
tional to –1. Therefore, 
 

 (26) 
 

The foregoing discussion is illustrated by 
Fig. 11: the left-hand side of Eq. (24) and the re-
fractive index are calculated in a straightforward 
way. The computed values are fairly consistent with 
conditions (26), provided the quantities nm are re-
placed by some average value. 
 

 
 
FIG. 11. Refractive index (curve 1) and left-
hand side of Eq. (24) (curve 2) for the self-
broadened CO molecule. The curves connect 
points calculated in the intervals between lines. 

 
9. FOURTH CROUP OF ARGUMENTS.  

CONTINUATION 
 

Let us return to the question that arose at the be-
ginning of § 7. The answer (or the resolution of 
”paradox-1“) will be the derivation of Eq. (19) from 
Eqs. (21) and (24). It should be born in mind that we 
mean here only the ability of Eq. (19) (or (12)) to fit 
the experimental values. The appearance of Eq. (19) 
specifically from relation (21) emphasizes the impor-
tance of the physical aspects involved in relation (21). 

The calculations themselves are relatively triv-
ial. Let ( ) ,c

nm nm nmк f    regarding nm as a manifes-
tation of the spectral dependence of the diagonal 
matrix elements of the relaxation operator at  > . 
The second of relations (26) implies that 
(/) ` 1. Having approximately defined the 
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average frequency detuning ( – nm)av by equating 
0 1( ) ( )nm av nm nmS         to Eq. (24). we will 

actually derive Eq. (19). Of course Eq. (24) defines 
only nm

nm

  and says nothing as to the contour of a 

separate line. 
 

CONCLUSION 
 

The above considerations should not be inter-
preted by any means as the nonrecognition of line 
mixing as such. The excellent papers here cited here 
demonstrate the existence of the effect and its sub-
tleties under the resonance interaction.  

However, the laws governing the behavior of 
the line center cannot be directly extrapolated to the 
line wings, for these regions are separated by so ex-
tensive a "watershed" that we have to speak, in es-
sence, about quite different physical problems. The 
qualitative prerequisites which must be taken into 
account are well known.5,6,53 

The interpretation of the resonance interaction 
( > 0, Fig. 12) proceeds from the  assertion that it 
is "switched on" on a segment of the “free path", 
driving the molecule into an excited state, i.e., opti-
cal nutation takes place73 around n3 or n4 (Fig. 12). 
In this case, each collision is optically active (i. e., 
accompanied by the absorption of a quantum). This  
restores the equilibrium (makes the molecule return 
to its lower state n1 or n2, see Fig. (12)) disturbed 
by the field between collisions. There would be no 
problems with a two-level system, but for the case of 
Fig. 12 collisions may "mix up' closely spaced lev-
els. Naturally, a "short memory" becomes essential, 
i.e., a seguence of n in a succession of collisions. 
The meaning of the synonym "the interference of 
quantum states" and what is meant by the indispen-
sability of resonance, especially the purely quantum 
character  of the effect, are clear. 
 

 
 
FIG. 12. Energy level diagram of a molecule the 
Hamiltonian H0. nj are the eigenfunctions of H0 
and nj are the corresponding eigenstates; 41, 
31, 42, 32 > ; 43, 21 ` 0. 

 
However, at fairly large frequency detunings, 

the interaction of an active molecule with the field 

occurs only during a collision (the nutation ampli-
tude  1/). The molecule gets rid of the absorbed 
energy through a series of subsequent, already opti-
cally inactive collisions — such a stage of the evolu-
tion can be called a "drift". Actually, the transfor-
mation from relation (1) to relation (21) is formally 
related to them: "the drift time" appears in the ex-
pression for  (see Eq. (26)). 

These circumstances make the importance of a 
"short memory" problematic — after all, the quan-
tum states of an active molecule are statistically in-
dependent for optically active collisions separated by 
a drift (but it is they and only they that contribute 
to the absorption coefficient). These features explain 
the meaning of parameter (13) and its evaluation. 
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