
A.I. Zhiliba Vol. 3,  No. 5 /May  1990/ Atmos. Oceanic Opt. 463 
 

0235-6880/90/05  463-05  $02.00  © 1990 Institute of Atmospheric Optics 
 

SHOT NOISE REDUCTION IN THE PHOTODETECTION OF RADIATION 
FROM A LASER WITH INTRACAVITY GENERATION  

OF THE SECOND HARMONIC 
 
 

A.I. Zhiliba 
 
 

Institute of Atmospheric Optics, 
Siberian Branch of the Academy of Sciences of the USSR, Tomsk 

Received December 29, 1989 
 
 

The possibility of construction of a macroscopic source of radiation with decreased 
natural fluctuations (squeezed light) based on a laser with intracavity generation of 
the second harmonic is validated. 

It is shown that the dip in the photocurrent power spectrum below the shot noise 
level in the course of detection of frequency-doubled light exceeds the corresponding 
value for the primary wave by a factor of four. 

 
 

The sensitivity of some devices, for example, laser 
detectors,1–3 intracavity laser spectrometers,4 etc., and 
optical communication lines,5 reaches a limiting value 
and is limited only by the spontaneous noise of the 
laser source (quantum laser noise). In the detection 
process, quantum noise with Poisson photon statistics 
results in shot noise, the lower limit of photodetection 
noise.6 At present, various ways of constructing light 
sources with a decreased level of quantum fluctua-
tions, sub-Poisson lasers,7–8 or, in general, sources of 
squeezed states of the electromagnetic field,9–11 have 
been thoroughly studied. One of the main properties 
of squeezed light, which is manifested in photodetec-
tion, is a complete or partial reduction in the shot 
noise by a negative excess.6 In the end result this re-
sults in an increase of the limiting value of the signal-
to-noise ratio.12 Important experimental results in the 
construction of a squeezed light source have been 
achieved using optical parametric frequency divid-
ers11,13–14 and a semiconductor laser with sub-Poisson 
pumping.8 In this paper, we theoretically investigate 
another scheme of squeezed light sources. The emission 
is formed within the general cavity, in which, along 
with the active laser medium, is placed a transparent 
nonlinear crystal that transforms the field at the laser 
source frequency  — the primary wave (PW) into 
the second harmonic (SH). It is shown that, first, such 
a source can generate squeezed light both of the PW 
and the SH, and, second, in the photodetection of 
both the PW and the SH, a dip in the low-frequency 
region of the photocurrent power spectrum is pro-
duced. The depth of this decrease in the photocurrent 
noise in the detection of SH can in principle be four 
times greater than the corresponding value for PW. 
 

THE PHOTOCURRENT POWER SPECTRUM 
 

The noise that limits the accuracy of measurement 
is described by the formula derived in the plane wave 
approximation6: 
 

 
 

 (1) 
 

where q is the quantum efficiency of the photodetec-
tor,  is the cavity width of the radiation source, and 
a+ and a are the photon creation and annihilation 
operators. Under conditions of stationary generation 

2
0 ,

N
n a n v    N denotes normal ordering,  is 

the complex amplitude (the eigenvalue of the opera-
tor a in the coherent states representation). Taking 
this into account, as well as the correlations 

2(0) ( ) (0) e ,tv v t v   where  is the rate of decay 

of the amplitude fluctuations, Eq. (1) takes the form 
 

 (2) 
 

where 
22n n n

n

 
   is the Fano factor, which 

has the meaning of a relative variance of the inten-
sity fluctuations. The first term in Eq. (2) is the 
shot noise. It does not depend on the frequency and 
is due to natural field fluctuations in the coherent 
state. The shot noise is the minimum noise that can 
arise in the detection of radiation from a single-mode 
laser in the regime of multiple excess over the gen-
eration threshold. The second term in Eq. (2) is 
called the excess noise and is proportional to a pa-
rameter of statistics. It is known that  = 0 for the 
coherent state,  = 1 for radiation with Gaussian 
statistics, 0 <  < 1 for light squeezed in intensity, 
and  > 1 for light squeezed in phase.6 Thus, in the 
course of direct photodetection of the intensity-
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squeezed light, reduction of the shot noise by a 
negative excess can occur completely or partially in 
the low-frequency region of the spectrum. This, in 
turn, results in a growth of the limiting accuracy of 
measurement of the light intensity (power). In the 
same experiment, for phase-squeezed light, on the con-
trary, an anomalous augmentation of the excess noise 
occurs. In this paper, we calculate  and  in order to 
be able to analyze Eq. (2) applied to the detection of 
the primary wave and the secondary harmonic. 
 

A SEMICLASSIC DESCRIPTION OF SH 
GENERATION IN THE LASER CAVITY 

 
We shall describe the process of generation of 

the SH in the laser cavity (or intracavity secondary 
harmonic generation) (intracavity SHG) by the fol-
lowing system of the equations15: 
 

 
 

 (3) 
 
where 1 and 2 are the dimensionless amplitudes of 
the PW and the SH in the cavity, k and  are the 
linear amplification and saturation coefficients of the 
active medium in which generation of the PW takes 
place, g is the coefficient of nonlinear coupling be-
tween the PW and the SH proportional to the 
square of the susceptibility of the crystal, 1 is the 
width of the cavity at the frequency  (without 
nonlinear losses in intracavity SHG), and 2 is the 
cavity width at the frequency 2. For system of 
equations (3), the following approximations are as-
sumed to hold: the SH does not interact with the at-
oms of the active medium, the operation of the laser is 
described by the Lamb model,17 the laser generation is 
single-frequency, and the frequency tuning is central. 
The system of nonlinear equations (3) describes the 
interaction of two modes, one of which — the one at 
the frequency  — has a positive coefficient of the 
linear term, while the SH term has a negative one. We 
will carry out an analysis of the dynamics of this 
nonlinear system based on the principle of subordina-
tion.16 The formal solution for a has the form 
 

 (4) 
 

After integrating Eq. (4) by parts, we have 
 

 (5) 
 

In Eq. 5 we substitute the right side of the equation 
for 1 of Eqs. (3), where, instead of the unknown 2, 

we make use of the solution 0 2
2 1

2

g
  


 as a zeroth 

approximation, and again integrate by parts to obtain 
 

=

 
 

 (6) 
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+
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The following notation was used in Eq. (7): 
 

 (8) 
 

Note that under the condition 0 <  ` 1, a solution 
for 2 in the form 
 

 (9) 

 
is a good approximation. In Ref. 18, the solution for 
2 when  = 0 was used to describe the quantum 
fluctuations of the PW and the SH in the squeezed 
light source model being analyzed. This results in an 
exaggerated value of the Fano factor, since the part 
of the solution of Eq. (9) proportional to  is of the 
same order of smallness as the fluctuations. The con-
dition 0 <  ` 1 has a clear physical meaning: the 
cavity Q at 2 must distinctly exceed the difference 
between the linear field amplification in the active 
laser medium and the PW losses involving nonlinear 
ones. He must take care that a breakdown of laser 
generation does not occur under the conditions of 
intracavity SHC; therefore, the left part of the ine-
quality has been introduced. The condition 0 <  ` 1 
makes it possible for us to evaluate , the remainder 
(7) of the series (6), which we write in the form 
 

 (10) 
 

where max = max[()]. Comparing Eq. (10) with the 
second term in Eq. (5) and taking into account that  
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0 < max ` 1, we see that any subsequent term of the 
series 2

n  is less than the term of the smallness in 

max. Thus, 2 2 ( )
2 1

2

(1 ... ),n ng
          


 where 

 

 
 
n denotes the number of operations of taking the 
integral (10) by parts and corresponds to the ob-
tained remainder of the series. Substituting Eq. (9) 
in the right side of Eq. (3), we obtain for 1 
 

 (11) 
 

Under the conditions of stable simultaneous 
generation of the laser and SH, a nontrivial solution 

for 2
0 1n    is given by the relation 

 

 (12) 
 
for  = 0, where  = 21 – 2. Let us introduce the 

following notation: 
2

02
2

g
n 


 is the coefficient of 

transformation to the SH, I0 = n0 is the dimen-
sionless PW intensity within the cavity. It is known 

that an optimal cavity width 1
01

opt k
I

 


 exists in 

the absence of intracavity SHG.3 The coefficient of 
transformation to the SH is related to the system pa-
rameters in the following way: 
 

 (13) 
 

Let us consider the case in which the radiation 
at the frequency  is locked up within the cavity 
(1 = 0), and all of it is transformed into SH. In 
order that the above-described scheme generate the 
SH in the optimum regime, we require that 

2 1 .opt    It then follows that max 11
(1 )

2
     and, 

at  = 0, max = 0.5. Indeed, if all the photons of the 
PW generated by the laser are transformed into the 
SH, then the maximum number of photons at the 
doubled frequency will be less by a factor of two. 
Based on Eq. (11), we write an equation for v 
(n = n0 + v, v ` n0) 
 

 (14) 
 

 (15) 
 
At  = 0. Eq. (15) transforms into a well-known 
formula for the rate of decay of fluctuations of the 
number of photons generated by the laser.7 
 

A QUANTUM DESCRIPTION  
OF INTRACAVITY SHG 

 
Let us analyze the statistical properties of the 

considered source on the basis of the Fokker-Planck 
equation (FPE) for the positive definite Glauber 

phase density19–20 1,2 1,2 :F      

 

 
 

 
 

 
 

 (16) 
 

Analysis of the semiclassical system (3) makes it 
possible for us to apply the procedure of adiabatic 
exclusion of variables in Eq. (16).16 Let us transform 
to polar coordinates ein    in the derived equa-
tion. Under the conditions of stationary generation, 
stable values of n0 and 0 are set up. Therefore, the 
fluctuations v and  given by  are small. Taking 
the abovesaid into account, and assuming the inde-
pendence of the amplitude and phase fluctuations, 
i.e.,  = R  , on the basis Eq. (16) we obtain a 
linearized equation for R 
 

 (17) 
 

where 1 has the form (15). Taking into considera-
tion the relation 2 2

02 1,
A N

v v n    where 

2
0 1,N

v n    we obtain a formula for 1 which is 

needed for the calculation of 2 :i  
 

 (18) 
 

Note that in the absence of intracavlty SHG, i.e., 
 = 0, Eq. (18) transforms into a well-known equation 
for a laser without instrumentation noise.7 In the oppo- 
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site case, i. e., 1 2/ 2 1  n  — the case of highly 
effective intracavity SHG, squeezing of the PW 
within the resonator is achieved. Let us turn our 
attention to the fact that a laser with Poisson pho-
ton statistics and intracavity SHG as 1 – 0 (for any 
nonzero value of the transformation coefficient 
  0, and I0 p 1), generates PW photons within 
the cavity with sub-Poisson statistics. 
 

REDUCTION OF THE SHOT NOISE OF 
PHOTODETECTION OF RADIATION 
GENERATED IN THE INTRACAVITY 

SHG PROCESS 
 

It follows from Eq. (2) that suppression of the 
shot noise by a negative excess ( < 0) is possible in 
the low-frequency region of the photocurrent power 
spectrum, i. e., for 2 ` . If  – 0, then 
 

 (19) 
 

If we substitute  = 1 + 22 and given by formulas 
(15) and (16) into Eq. (19), we obtain the following 
equation for the depth of the decrease below the 
shot noise level K1: 
 

 (20) 
 

Note that K1 = 0 corresponds to maximum squeezing 
of the SH in the cavity. When the transmission coef-
ficient for the PW is selected so that the linear 
losses are equal to twice the nonlinear ones (due to 
intracavity SHG), i. e., if 1 = 42, then 

1

1
;

8
K q

 
   (q  1,  ` 1). 

In the photocurrent spectrum of the SH radiation, 
there will have three contours defined by the correla-
tors (0) ( ) ,u u


  where 12 ,u f n v    f is the source 

of the SH natural fluctuations. When n1 p 1, the 
main contribution to the photocurrent from the SH 
will be produced by the contour defined by the term 

2
14 (0) ( ) .n v v


    Taking this into account, K2 has 

the following form:  
 

 (21) 
 

For I0 p 1 formula (21) reduces to the expression 
 

 
 

 (22) 
 

When 1 ` 42, 1
2 (1 2 ) .

2
q

K 
     

The depth of the decrease in the photocurrent 
power spectrum of the SH is thus four times greater 
than the corresponding value for PW. 
 

CONCLUSION 
 

On the basis of the foregoing theoretical study 
we may conclude that it is possible to build an effec-
tive macroscopic source of squeezed light based on a 
laser with intracavity SHG. Radiation from such a 
source can result in the reduction of the shot noise 
of photodetection of both the PW and the SH. We 
call special attention to the result of an almost four-
fold increase in the suppression of shot noise in the 
course of SH detection in comparison with PW. An 
incomplete description of the behavior of quantum 
noise during intracavlty SHG21 has resulted in the 
fallacious view of the inefficiency of the given model 
of a squeezed radiation source. 

I thank V.N. Gorbachev, who attracted our at-
tention to the possibility of a considerable manifesta-
tion of SH squeezing during photodetection, as well as 
E.P. Gordov for a fruitful discussion of the article. 
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