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A modified splitting algorithm for numerical simulation of the propagation of a 
high-power acoustic wave in the atmosphere is proposed. The algorithm takes into ac-
count diffraction and dissipation of energy. The calculations are compared with the 
published experimental results (Bochkarev et al. Propagation of Sound and Optical 
Wave in the Atmosphere). 

 
 

Increasing the intensity of acoustic beams in 
acoustic1,2  and radioacoustic3 systems for sounding 
the meteorological parameters of the atmosphere in 
order to extend the operating range of the system 
results in am increase of the nonlinear absorption of 
the acoustic wave. In the process, the errors, for 
example, in the interpretation of the intensity of the 
signal that is received by the acoustic locator and 
carries information about the temperature and wind 
inhomogeneities of the atmosphere, increase, since 
the absorption of the signal emitted by the acoustic 
locator becomes strongly nonlinear. Methods for 
taking such errors in the sounding systems under 
consideration into account are either lacking2 or they 
are only qualitative.3 This is attributable primarily 
to the mathematical difficulties in taking into ac-
count simultaneously nonlinearity, diffraction, and 
dissipation in the theoretical analysis of the propaga-
tion of a high-power acoustic beam in the atmos-
phere. Serious technical difficulties also arise in test-
ing the theoretical solutions obtained. 

In this paper we develop a numerical method 
for solving this problem and we check the computa-
tional algorithm on specific experimental data. 

The propagation of a high-power acoustic beam 
in the atmosphere can be described by the following 
equation in dimensionless variables4: 
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The coefficients N = Lg(2Lp)
–1, Â = (4  )–1, and 

M = Lg  are the nonlinearity, diffraction, and dissi-
pation parameters, respectively, where Lg = à2–1, 
Lp = (A)–1;  = ( + 1)  (20c)
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 = 2ñ–1,  is the wavelength of the sound wave,   
is the sound attenuation coefficient; and 0 is the den-

sity of the medium. Equation (1) was written for the 
normalized perturbation of the density of the medium 
 = *A–1, where * is the density perturbation, 
P = *ñ2, P is the sound pressure, ñ is the sound veloc-
ity, and A is the amplitude perturbation of the density 
of the medium on the axis of the radiator at x = 0. 

No analytic methods for solving Eq. (1) ana-
lytically are currently available. Such problems are 
generally analyzed by solving Eq. (1) numerically 
with given initial and boundary conditions. An effi-
cient approach is to Fourier transform Eq. (1). This 
converts the equation into a system of equations for 
the harmonics: 
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where 
 

  
 

m = 1, 2, ±3,  is the number of the harmonic; 

and, 2 2 .
x y
 

  
 

  

To solve each equation in the system (2) we 
used a modified splitting method developed by Kon-
yaev5 for wave-optics problems. 

The splitting procedure was applied to each 
equation in the system (2). It consisted of subdivid-
ing the axis of the evolution variable z (the longitu-
dinal coordinate) into segments 1

sz z N    and 

replacing at each step z the Eqs. (2) with an 
equivalent system of equations 
 

 (3) 
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In contrast to the familiar one-cycle scheme, the 
scheme described above is of second-order accuracy 
with respect to z, and it does not significantly com-
plicate the computational algorithm and it increases 
the rate of convergence by an order of magnitude. 

The first equation of the system (3), (this equa-
tion is of the parabolic type) was solved by a modi-
fied FFT method. 

The modification consists of separating vari-
ables in the Laplacian operator and then using the 
one-dimensional FFT algorithms to solve the sepa-
rate homogeneous equations. In doing so, the fil-
tering function becomes one-dimensional 
H(ê) = exp(–Bm–1  ê2z); this reduces the com-
puter memory required and makes it possible to 
monitor the edge effects in the case of strong dif-
fraction of the beam. 

The diffraction for large values of the wave pa-
rameter z was calculated by the coordinate transforma-
tion method. The beam was assumed to be collimated 
up to z = 1. For z > 1 the beam was assumed to be 
divergent with geometric divergence p = Lgr

–1, 
where r is the radius of the spherical wavefront. The 
adaptive computational algorithm follows the beam 
spread and stretches the coordinate grid at the rate 
of geometric divergence p. 

The absorption coefficient for each harmonics 
fm studied, (f is the fundamental frequency and 
m = 1  10) was calculated by the well-known 
standard formulas.6 

The initial conditions for Eq. (2) were given in 
the form of a beam with a plateau-shaped amplitude 
distribution across the beam: 
( = 0) = exp(xn + yn)cos(i), where n = 8. 

The efficiency of the proposed procedure was 
checked by comparing the numerical results with the 
experimental data reported by Bochkarev, et al.1 For
this, the most representative dependence of the 
sound pressure on the electric power of the acoustic 
source, measured on the axis of the beam at a dis-
tance of 30 m from the radiator with the fundamen-
tal frequency f = 3.5 kHz, was selected from Ref. 1. 
To compare the calculations with the experiment the 
values of the electric power were converted into the 
sound pressure P0 whose values corresponded to the 
exact solution of the diffraction problem for a plane 
rectangular radiating aperture with given dimensions.7 
The reference point for the sound pressure was taken 
to be the point corresponding to the minimum electric 
power (100 W) supplied to the radiator. 

The result of the comparison is shown in Fig. 1, 
where the sound pressure P of a real radiator1 
(curve 2) and the sound pressure calculated taking 
into account the nonlinearity, diffraction, and dissi-
pation of sound (curve 1) are plotted as a function 
of the pressure P0 corresponding to the exact solu-
tion of the diffraction problem at 30 m from the 
source for f = 3.5 kHz. The insignificant discrepancy 
between the calculations and the measurements for  
 

large values of P0 is connected with the computa-
tional and measurement errors as well as other fac-
tors. One reason for the discrepancy is that the 
nonlinear distortions of the acoustic wave at z = 0 
were neglected; in Ref. 1 no information about these 
distortions is given and for such systems they are 
quite significant ( 15%). Another reason is that in 
Eq. (1) atmospheric turbulence is neglected. 
 

 
 

FIG. 1. 
 

Figure 1 also demonstrates the saturation effect, 
which can be used as an a criterion for optimization 
of the power of the probe beam. The nonlinear ab-
sorption of sound, according to Fig. 1, amounted to 
 10 dB at a peak power of the radiator. 

The favorable comparison the absolute com-
puted and measured values of the pressure allows us 
to recommend the proposed procedure for solving 
problems in nonlinear atmospheric acoustics. 
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