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A model analysis of comparative effectiveness of two- and three-angle schemes for 
determining the temperature of the ocean surface is performed in the approximation of 
an absolutely black surface and a clear and aerosol-free atmosphere. The estimates 
were obtained using the method of local linearization of the transfer equations; this 
method makes it possible to take into account a priori informationabout the variability 
of the atmosphere in different regions. It is shown that the use of the three-angle 
scheme is justified under conditions when the errors in recording the IR radiation are 
reduced to  0.01 K. 

 
 

Two-channel methods for determining the 
temperature of the ocean surface (TOS) from remote 
IR measurements, both spectral and angular, are 
widely accepted.1–7 At the same time, methods based 
on measurements of the angular structure of the 
outgoing radiation, as a whole, have been proposed in 
order to take into account more accurately the 
distorting effect of the atmosphere.8,9 However these 
methods have not yet been adequately checked in 
practice and they require further comprehensive 
analysis. 

Depending on the source of errors and 
distortions, different authors use different techniques 
to investigate theoretically the effectiveness of 
remote methods for determining the TOS. An 
approach to the analysis of the two-channel methods 
(spectral and angular) of atmospheric correction that 
takes into account the variability of the vertical 
profiles of the temperature and moisture content of 
the atmosphere in the bottom layers of the 
atmosphere as multifactor noise is developed in 
Refs. 6 and 7. Such an approach was used earlier in 
Ref. 10. It is based on the general principles for 
solving inverse problems of remote sounding.11 In 
this paper this approach is employed to analyze the 
three-angle method for determining the TOS. One of 
the basic problems here is to compare the relative 
efficiencies of the two- and three-angle methods. 

The scheme of the analysis, the radiation model, 
all initial assumptions, and the basic notation 
employed here are identical to those described in 
Ref. 7, so that we shall not discuss them here. 
Increasing the number of measuring channel (the 
viewing angles), however, required modification of 
the working formulas used to obtain estimates of the 
accuracy of the determination of the TOS and the 

optimal coefficients j in the expression 
 

 (1) 
 

where rT


 is a three-dimensional vector of the 

radiation temperatures measured at three angles, 


 
is a three-dimensional vector with the components aj 
(j = 1, 2, and 3), and the parentheses indicate I 

a scalar product of the enclosed vectors. 
Assuming, as done in Ref. 7, that 
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where ,rT
T


 






 we  obtain the following  expression 

for the error in determining the TOS in the linear 
approximation: 
 

 (4) 
 

where 

 is the vector of errors in the measurements 

of the radiation; a

 is the vector of variations of the 

radiation temperature which are associated with the 
atmospheric parameters: 
 

 
 

where (0)
1 1 1x x x    are the variations of the 

moisture content and temperature of the atmosphere  
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at N altitudes. The "zero” superscripts here and in the 
formula (2) denote the point of linearization, for 
which the climatic values of the parameters are 
employed. 

Using the conditions (2) and (3) and the 
expression (4) the following formula can be derived 
for the variance of the errors in determining the 
TOS: 
 

 (5) 
 
where the matrix  is the covariation matrix of the 
sum ,a  

 
 i.e., factors that interfere with the 

determination of the TOS. 
The matrix  is determined by the statistical 

properties of the variability of the atmosphere and 
the errors in the measurements of the radiation. If 
the covariation matrix of the parameters of the 
atmosphere x1 is denoted by G and the matrix 

formed from the vectors 
1

rT
x





 as the columns 

(i = 1, , 2N) is denoted as H, then 
 

 
 
where E is the three-dimensional unit matrix, the 
superscript "T” denotes transposition, and 2

n  is the 
variance of the errors in recording the radiation 
temperatures. The errors for different viewing angles 
are assumed to be uncorrelated, they are assumed to 
have zero mean values, and their variances are 
assumed to be the same 

The physical  meaning of the conditions (2) and 
(3) employed in deriving the formula (4) is discussed 
in Ref. 7, so that we shall not discuss it here. 

The optimal vector 


 is determined by 
minimizing 2 taking the condition (3) into account. 
The method of Lagrange multipliers leads to the 
following expressions for the optimal 


 and 

determining the temperature of the ocean surface: 
 

 
 

Like in Ref. 7, concrete calculations were 
performed for the spectral interval 900–920 cm–1 with 
the help of a radiation model, taking into account the 
continual and selective components of absorption of 
radiation by water vapor. This model was found to 
give results that are analogous to those obtained with 
the well-known program LOWTRAN-5, but it is more 
convenient for performing such calculations. The ocean 
surface is assumed to be absolutely black. The matrices 
G and the reference altitude profiles of the 
temperature and moisture content of the atmosphere x 
are given according to Ref. 12 for different regions and 
seasons. The computational scheme is described in 
greater detail in Ref. 7. 

 
It is also assumed that one of the viewing rays is 

directed vertically at the nadir while the other two 
rays are oriented at angles 2 and 3 to the vertical (at 
the point where the rays intersect the ocean surface 
taking into account the sphericity of the earth). In this 
paper the angle 3 is set equal to 60° and the 
dependence of the errors in the determination of the 
TOS on the choice of 2 is analyzed; in addition, 
2 < 3. When the two- and three-angle methods of 
measurement are compared we shall denote the 
corresponding values of  as 2 and 3. For the two-
angle method the second angle is also denoted as 2 
and the first angle is equal to zero. 

It is desirable to check the three-angle method 
first under atmospheric conditions which result in the 
highest errors in the determination of the TOS by the 
two-angle method. According to Ref. 7, from this 
viewpoint, the region 4.3 during the fall (according to 
the classification of Ref. 12), which was chosen for 
detailed analysis, is the most unfavorable region. This 
region includes a large part of the Indian Ocean 
northward of the equator (Ref. 12 contains data only 
from the northern hemisphere). 
 

 
 
FIG. 1. The errors in determining the TOS by the 
two-angle method (1 and 2) and the three-angle 
method (3 and 4) for two degrees of errors in the 
measurements n: 0.05 (1  and 3) and 0.01 K (2 
and 4) (the atmosphere is of the type “fall 4.3”). 

 
Figure 1 shows for this atmospheric situation 

the dependence of 2 and 3 on 2 for two levels of 
errors in recording the radiation temperature. For 
n = 0.05 K the quantity 3 is virtually independent 
of 2 and the optimal value 2  0.39 K is reached 
for 2  50°. In the interval 50–60° remains virtually 
constant, but it increases substantially as 2 
decreases. It is pointless to study n > 0.05 K, since 
the fact that 3 is constant as a function of 2 
actually means that the three-angle method 
degenerates into the two-angle method. This effect 
will be studied in greater detail below. 

As n decreases to 0.01 K the picture changes 
appreciably — an extremum also appear for 3 (at 
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2  50°), and the position of the extremum of 2 shifts 
to 2  35–40°. 

In order to understand better the physical 
mechanisms for these dependences the variance of the 
errors in determining the TOS can be represented as 
follows: 
 
 

 
 

where 2
a  denotes the contribution of atmospheric 

noise. Examples of the numerical values of the 
quantities appearing in this formula are given in 
Table I for the atmosphere "fall 4.3” for different 
values of n. Here the angle 2 = 50 for the three-
angle method and 2 = 40 for the two-angle method 
in accordance with the optimal values of this angle for 
n = 0.01 K. 
 

TABLE I. 
 

 
 

One of the basic differences between these two 
methods is that 3  0 for n = 0, while 2 is 
substantially different from zero. But this is achieved 
at the expense of a significant increase in  for the 
three-angle method, a consequence of which Is that 3 
depends strongly on n. This in turn leads to the fact 
that the optimal coefficients j of the three-angle 
method also depend on n, while for the two-angle 
method in the range of values of n studied the 
coefficients j remain constant as n increases. 

The dependence of j on n for the three-angle 
method is shown in Fig. 2 ("fall 4.3“ atmosphere; 
2 = 50). The value of j starts to increase 
appreciably at n  0.005 K as n increases. 

One of the basic properties of the coefficients j 
in the three-channel methods of atmospheric correction 
is that 1 > 0, 2 < 0, and 3 > 0. It is assumed that 
the channels are numbered in the order of decreasing 
transmission of the atmosphere.2,5 In our case these 
conditions are satisfied only for sufficiently small 
values of n; when n increases up to approximately 
0.06 Ê the three-angle method degenerates into the 
two-angle method, since in this case 2 = 0. For 
0.06 < n < 0.1 K measurements at angles of 2 and 3 
appear in the formula for calculating the TOS with 
approximately the same (negative) coefficients, since 
they are virtually identical. There is no point in 
studying even larger values of n. 

Thus the results obtained indicate that the three-
angle method has an advantage over the two-angle 
method only for small errors in the detection of the 
radiation. 

 

 
 

 

FIG. 2. The coefficients j of the three-angle 
method for the variant 2 = 50 (“fall 4.3 
atmosphere). 

FIG. 3. The relations between the coefficients j 
for 48 regions from Ref. 12 with n = 0 and 
2 = 50. 

 
Figures 3 and 4 show the values of j obtained 

in the three-angle method with n = 0 for all 48 
regions from Ref. 12. The values of 3 are close to 

zero (d 0.03 K), so that there is no need to discuss 
their properties for different regions. The coefficients 
j satisfy, with high accuracy, the conditions 
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and vary from one region to another in a single-
parameter fashion. The dependence of 3 (and hence 
of 1 and 2) on the integrated moisture content of 
the atmosphere Q reveals a more complicated 
behavior than for the two-angle method.7  For the 
three-channel method the specific nature of this 
dependence consists of the fact that not only Q but 
also the temperature of the atmosphere affect j 
(here T0 is the air temperature at the surface of the 
ocean, which is equal to TOS). 
 

 
 

FIG. 4. The values of the coefficient 3 for 48 
regions from Ref. 12 for n = 0 and 2 = 50: 
1) T0 < 280 K; 2) 280 < T0 < 290 K; 3) T > 290 K 

 

The computational results presented reflect the 
basic characteristics and trends observed in the 
dependences of the coefficients j and the accuracy 
in the determination of TOS by the three-angle 
method as a function of the angle 2, the errors in 
the recording of the radiation, and the regional 
atmospheric conditions. In obtaining them only the 
absorption by water vapor was taken into account in 
the radiation model of the atmosphere, so that the 
specific numerical estimates should not be regarded 
as final. At the same time, it is clear that when the 
variations of the vertical profiles of the moisture 
content and air temperature are taken into account 
the three-angle method has am advantage over the 
two-angle method only if the values of n are 
sufficiently small: n  0.01 K. From this we can 
conclude that for the actual errors in recording the 
radiation using modern radiometers (n  0.05–0.1 K) 
there is no use in performing measurements at three 
and more angles. The effective error level n can be  

reduced to some extent by averaging over a series of 
adjacent readings, as was proposed, for example. In 
Ref. 13, but this question requires further critical 
analysis in practice. 
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