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A theoretical model for a beam-forming device, based on the ’’lens-axicon" pair with 
a truncated central part is constructed. The device is distinguished by the fact that it 
gives a more uniform distribution of energy in the irradiation circle. Analytical relations, 
describing the form of the distribution as a function of the radius of the central part and 
the other parameters of the apparatus, are derived. The relations obtained pertain to both 
the cases of truncated and untruncated central part of the system, and reduce to known 
limits as the radius of the central truncated part approaches zero. Nomograms of the 
energy distribution over the irradiation circle are presented. 

Analysis of the results obtained shows that the relations derived are useful for solving 
applied problems that require highly uniform energy distribution in the irradiation circle. 

 
 

1. Optical systems with a lens and an axicon, 
which make it possible to concentrate laser-radiation 
energy in a narrow ring on the surface of the part being 
processed, are used in the technology for processing 
materials with a laser beam.1 The industrial imple-
mentation of such technologies and systems is being 
facilitated by the development of the theory and 
elemental base for Besselian optics — motion-picture 
axicons, aspherical lenses, wavefront correctors, and 
other thin-film phase-optic elements.2–5 

In the energy concentrator of the type studied 
here the lens plays the role of a quadratic, and the 
axicon plays the role of a linear spatial modulator of 
the phase. The combined effect of these two elements 
on the wavefront, described by a transmission function 
of the form 
 

 (1) 
 

gives the necessary redistribution of the laser-radiation 
energy over the cross section of the beam and con-
centrates the laser energy in a ring at the output of the 
system. In Eq. (1) the parameter f corresponds to the 
focal length of the lens; r0 is the radius of the ring 
formed on the surface of the part being processed; r is 
the radial coordinate in the plane transverse to the 
beam axis; and,  is the wavelength of the radiation. 
The ring is formed in the focal plane of the lens and the 
radius r0 of its central line is determined by the 
characteristics of the lens and the axicon. For a linear 
conical axicon made of a transparent material with 
index of refraction n the equation6 
 

 (2) 
 

where  is the angle at the base of the axicon, is 
satisfied. This angle usually does not exceed 

0.1–0.15 rad. The working relations are derived and 
the diffraction fields in the focal plane of the system 
with the transmission function (1) are calculated in 
many works; see, for example, Refs. 6–10. 

2. Modulators with the transmission function (1) 
are used in those cases when the energy of the beam is 
concentrated in a narrow ring on the surface of the 
material in order to obtain an equally narrow ring of 
heating. In most traditional applications of lasers in 
technology, however, it is necessary ultimately to have 
not a ring, but rather a circle of uniform heating with 
sharp edges. The axicon is employed in this case not to 
replace the circle with a ring but rather to increase the 
uniformity of the heating in the ring by redistributing 
the energy of the beam from the central part of the 
irradiation circle to the edges. This can be achieved in 
the scheme studied above by displacing the focal plane 
of the system from the surface of the part being 
processed or by not focusing the radiation with the lens 
at all. In this case a wide ring with a gap and not very 
sharp edges on the outside is created on the surface of 
the part. Because of heat flow the ring transforms after 
a short time into a circle with a uniform temperature 
distribution at the center. 

The idea for this application of axicons was pro-
posed in Ref. 11 in application to problems of surface 
heat hardening of materials. The experimental data 
presented confirm that the method is effective: it is 
possible to obtain a uniform temperature distribution 
in the central part of an irradiation circle with a 
diameter of up to 7 mm. However the "tails" of the 
distribution of the spot still remain wide. 

The best results are obtained with a different 
method for forming beams, when the central part of 
the initial Guassian beam remains undisturbed while 
its peripheral part is contracted, by means of modu-
lation of the phase with the help of the axicon and 



Î.I. Smoktiĭ and A.V. Fabrikov Vol. 3,  No. 7 /July  1990/ Atmos. Oceanic Opt. 697 
 

lens, into a ring around the central irradiation spot 
formed on the surface of the part. To implement this 
method it is of interest to calculate the ring diffraction 
field in the "lens-axicon" optical system with a trun-
cated axial part that does not disturb the field of the 
beam. A modulator of this type is described by a 
transformation function of the form 
 

 
 

 (3) 
 

where 
 

 (4) 
 

This is a more general modulator than the one de-
scribed by Eq. (1). This is the modulator we shall 
study below. 

3. A beam of monochromatic spatially coherent 
radiation with a Gaussian intensity distribution I0(r) 
over the cross section of the beam 
 

 (5) 
 

is directed into the modulator (4). The distribution of 
the complex amplitude of the field at the output of the 
modulator 01(r) and in the focal plane of the lens 
(r), in this case, are given by the formulas 
 

 (6) 
 

 (7) 
 

Here 1(r) is the field of the wave perturbed by the 
modulator. On the basis of the paraxial Fourier op-
tics12 the field of the wave is represented by the 
Fourier-Bessel integral of the function 
0(r) exp(–ikrr0/f) [1 – circ(b/a)]: 
 

 (8) 
 

where J0 is a Bessel function of order zero, and the 
parameters  and 0 and the function () are de-
termined by the expressions 
 

 (9) 
 

 
 

 (10) 
 

In writing down the second term in Eq. (7) we ne-
glected the divergence of the beam in free space and the 
diffraction of radiation by the edges of the opening with 
radius b p . The distribution of the intensity in the 
focal plane of the lens is determined by the formulas 

 

 (11) 
 

 (12) 
 

Here we neglected the interference of the fields 0(r) 
and 1(r), making the assumption that r0 > b and 
taking into account the fact that the first field is lo-
calized in the region r < b, and the second field is 
localized in a narrow ring around the central line r = r0. 

To calculate 1(r) we shall rewrite the integral 
(8), taking into account Eqs. (9) and (10), in the form 
 

 (13) 
 

corresponding to a one-dimensional Fourier transform 
of the function 
 

 (14) 
 

The function H(x) in Eq. (14) is the Heaviside 
function. Separating s(x) into the factors s1(x) and 
s2(x), the integral in Eq. (13) over the spatial variable 
x can be replaced by a convolution integral over the 
frequency variable 0: 
 

(15) 
 

 (16) 
 

The separation of s(x) into the factors s1(x) and s2(x) 
makes sense in the case when one of the Fourier 
transforms, for example, S2(0), can be approximated 
by a Dirac delta function ( – 0): 
 

 (17) 
 
Then we obtain from Eq. (15) 
 

 (18) 
 
which corresponds to the expected form of the dis-
tribution of the complex amplitude of the field 1(r) in 
the irradiation ring at the output of the lens-axicon 
system.13 

Choosing for the second factor the function 
 

 (19) 
 

and Fourier transforming it, we obtain14 
 

 
 

 (20) 
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The Fourier transform of the first factor can be written 
in the form 
 

(21) 
 
We obtain from Eqs. (20) and (21), in accordance 
with Eq. (15), 
 

 (22) 
 

where the function 10 is given approximately by 
 

 (23) 
 

In Eq. (22) we introduced the dimensionless variable 
t given by 
 

 (24) 
 

the function erfc(z) = 1 – erf(z) is the error function 
with complex argument z. 

To derive the second equality in Eq. (20) we 
employed the formulas for expansion of the general-
ized functions of the form (x ± i0), regarded as entire 
functions of the parameter , in a Taylor series in 
powers of ( – 0) (for  = –3/2 and 0 = –1).15 
We are justified in neglecting the regular part of the 
function S2(0) in calculating the integral (15) in the 
asymptotic approximation of the theory for values 
  100, characteristic for the real conditions under 
which axicons are used.1 
 

 
 
FIG. 1. The energy distribution in the ring 
bounding the central part of the irradiation spot for 
different values of b/a: b/a  0 (1),  
0.1 (2), ... 1 (11). The width of the ring t as a 
function of the parameter b/a is shown in the inset. 

 
4. The formula (22), together with Eq. (12), 

leads to the following working relations for the dis-

tribution of the intensity of the modulated radiation in 
a ring bounding the central irradiation spot at the 
output of the system: 
 

 (25) 
 

 (26) 
 
Plots of the normalized distribution function 
I1(r)/I10, constructed with the help of Eq. (25), are 
presented in Fig. 1. The width of the ring as a function 
of the parameter b/a is shown separately in the inset. 
With the help of these plots it is possible to select 
parameters of the modulator so as to optimize the 
intensity distribution I(r) in the irradiation spot. 

In the limiting case b = 0 Eq. (25) assumes the 
form 
 

 (27) 
 
The formula (27) approximates well the expression 
derived in Ref. 7 for the intensity I(r) 
 

 
 

 (28) 
 
In the interval 0  t  1 the error of such an ap-
proximation does not exceed 7%. Here the function 
F(t) is Dawson’s integral14 

 

 (29) 
 

(r) is the gamma function, and 1F1(, , z) is 
Kummer's confluent hypergeometric function. The 
formula (28) can by derived directly from Eq. (15) by 
choosing in the following form the second factor in the 
separation of s(x) into s1(x) and s2(x): 
 

 (30) 
 

For the functions S2(0) and S1(0) we obtain 
 

 (31) 
 

 
 

  (32) 
 
Using Eqs. (31) and (32), after simple transforma-
tions we obtain Eq. (28) from Eq. (15). 

The formulas (27) and (28) are practically 
equivalent for modeling the radiation fields in the 



Î.I. Smoktiĭ and A.V. Fabrikov Vol. 3,  No. 7 /July  1990/ Atmos. Oceanic Opt. 699 
 

lens-axicon system. For the particular case b = 0 they 
give an asymptotic approximation to the theory based 
on the equations of the Fourier optics (8) and (9). The 
extension of the formula (28) to the case b  0 is not so 
obvious as in the case of the formula (27) and in so doing 
great mathematical difficulties must be overcome. 
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