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A review of the development of the Wolkenstein valence-optical (VO) theory of the 
integral characteristics of Raman spectra is given invariant expressions for the anisotropy 
of the molecular polarizability tensor and the anisotropy of the derived (in normal co-
ordinates) polarizability tensor, which are independent of the choice of the coordinate 
system fixed in the molecule, are obtained. The most recent data for Raman intensities of 
methane and carbon tetrachloride are used and the electrooptical parameters of the C-H 
and C-Cl bonds are calculated. The consistency of the zeroth-order approximation of the 
VO theory is shown for the considered molecules. A critical analysis of attempts to in-
troduce the first-order approximation into the VO theory is carried out. 

 
 

INTRODUCTION 
 

The creation of Raman lidars as an effective in-
struments of optical investigation of the Earth’s at-
mosphere in recent years has stimulated interest in the 
possibilities of Raman spectroscopy in the study of the 
structure of matter. 

The integral characteristics of Raman spectra, 
i.e., the intensities and depolarization ratios of the 
bands, contain information about such fundamental 
molecular properties as the electrooptical parameters 
(EOP). This information is deciphered by solving the 
inverse electrooptical problem of vibrational spec-
troscopy. However, after investigating a great number 
of molecules and molecular conformations, the vi-
brational spectroscopy begins to fulfill the functions of 
systematization only when a reasonable choice of the 
EOP is made, which can be transferred from one 
related molecule to another. 

Taking this fact into account, it is necessary to 
relate vibrational spectroscopy with the fundamental 
structural units of these molecules. In chemistry such 
structural units are chemical bonds and the individual 
atomic groups. The concept of the chemical bond 
(which is the foundation of the valence scheme) gives 
some invariant properties to geometrical characteris-
tics of the related molecules. This is confirmed by 
X-ray-structural data, according to which the bond 
lengths and valence angles between these bonds vary 
only slightly within a homologous series of molecules. 

The above-mentioned "invariance" of chemical 
bonds points to one of the main features of valence 
chemistry, i.e., its additivity, which holds, at least, in 
the zeroth-order initial approximation.1 The idea of 
additivity has become a guiding principle not only in 
valence chemistry, but also in molecular optics and 
spectroscopy, which study correspondingly equilibrium 
and dynamic properties of molecules and their structural 

elements.1,2 The classical experimental confirmation of 
additivity of optical effects is the well-known additivity 
of molecular refractions, which is observed for the 
majority of organic molecules with high accuracy.2–4 

Modern molecular optics and vibrational spec-
troscopy are based on the valence-optical (VO) theory, 
which was formulated by M.V. Wolkenstein5 by 
analogy with the valence scheme in chemistry. The VO 
theory was developed later in a series of papers,6–9 and 
enables one to correctly introduce the EOF’s of the 
molecules. These are the dipole electric moments of the 
bonds and their derivatives with respect to internal 
coordinates (they are determined by IR-spectroscopic 
methods) and the principal values of the bond po-
larizability tensors and their derivatives with respect 
to the internal coordinates, which are determined by 
the methods of molecular optics and Raman spec-
troscopy, respectively. 

Molecular EOP’s are considered in the Placzek’s 
semiclassical theory10 for the vibrational spectral 
intensities. The modern theory of vibrational spec-
troscopy, which is essentially based on the methods of 
quantum chemistry, does not use the concept of EOP. 
What is the reason for returning to the problem of 
EOP and a revision of the methods of VO theory? 

There are some reasons for so doing. First, the 
problem of calculating molecular EOP is a classical 
one in the sciences dealing with the structure of 
matter, but up till now the problem has not been 
finally solved. Second, the VO theory, as it was shown 
in Refs. 1, 2, 8, and 9, works well in most cases, while 
quantum chemistry calculations of molecular pa-
rameters are often complicated by serious computa-
tional difficulties. Finally, the accuracy of semiem-
pirical methods in the VO theory is usually consid-
erably higher than those of quantum chemistry. 

Taking all this into account, in this paper we 
work out a new method for calculating the intensities 
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of Raman light scattering by molecules in the elec-
tronic ground state. In our method the technique for 
calculating Raman intensities is considerably simpli-
fied in comparison with traditional methods.1,8,9 All of 
the calculations are made in the additive scheme of the 
VO theory, i.e., in its zeroth-order approximation, in 
which the anharmonic vibrations are neglected. The 
question of the so-called first-order approximation of 
VO theory is discussed separately. 

Recent experimental data on the Raman intensi-
ties in methane and carbon tetrachloride vapor are 
used to obtain more accurate values of the EOP of the 
C–H and C–Cl bonds, which are structural elements 
of a large number of organic molecules. The 
so-obtained values of the EOP of these bonds and the 
parameters for the O–H bond11 make it possible to 
solve the direct and inverse electrooptical problems of 
Raman scattering for a large class of molecules, in-
cluding those which define the normal and polluting 
components of the Earth’s atmosphere. 
 

CALCULATION OF INVARIANTS OF  
MOLECULAR OPTICS IN VALENCE-OPTICAL 

THEORY 
 

In order to demonstrate our method for calcu-
lating Raman Intensities, let us first consider a similar 
calculation for a molecule in the equilibrium state, 
i.e., under the conditions which are studied in mo-
lecular optics. 

Stuart and Volkman12 were the first to represent 
the molecular polarizability tensor auv (u, v = x, y, 
z), written in the laboratory coordinate system 
(L-system), as a sum of the polarizability tensors ( )n

uv  
of the individual molecular chemical bonds: 
 

 (1) 
 

Diagonalization of each of the tensors ( )n
uv  is 

carried out in its own local coordinate system M(n), 
where the polarizability ellipsoid of the given bond is 
reduced to its principal axes. In the M(n)-system the 
first principal axis (a = 1) of the ellipsoid Is directed 
along the bond, while the other two (a = 2, 3), being 
mutually perpendicular, are found in the plane P(n) 

orthogonal to the bond. We should emphasize that the 
additivity of the VO theory, represented in Eq. (1), 
makes it possible to carry out the diagonalizations of 
the tensors ( )n

uv  simultaneously and independently for 
each bond by choosing for it its own coordinate system 
M(n). Consequently, the direction cosines in the 
well-known expression1,2 
 

 
 

 (2) 
 

depend on the bond number n. 

The values ( )n
uv  — the principal (proper) values 

of the bond polarizability tensor, reduced to its 
principal axes, — are invariant relative to any coor-
dinate transformation, which does not stretch or 
compress the bond polarizability ellipsoid, the lengths 
of whose semiaxes are these values.4 

On the other hand, the direction cosines cos(nau) 
of the angles between the coordinate axes of each local 
M(n)-system and the axes of the L-system depend on 
the choice of the latter. Hence, for rather complex 
molecules, geometrical calculation of all the direction 
cosines takes on the character of a separate problem.4 
However, there is no need to perform these calcula-
tions, as will be shown below. 

The point is that in molecular optics one compares 
with experiment not the components of the tensor auv, 
which obviously depend on the choice of coordinate 
system, but the invariants of this tensor, which are 
 

 (3) 
 
and 
 

 (4) 
 
which are independent of the choice of the L-system. 
Hence, such finite expressions should exist for the 
invariants b and g2, which do not contain noninvariant 
values of the direction cosines. 

Such an expression for the trace of the tensor b is 
well-known1: 
 

 (5) 
 

As regards the anisotropy g2 of the tensor auv, it 
seems very strange, but no invariant expression for this 
value has been cited in the literature to date. 

A method for obtaining this invariant expression 
has been indicated elsewhere.13 Let us consider the 
formulation of this method, for we shall need it further. 

Note that the direction cosines cos(nau) in 
Eq. (2) are the elements ( )n

auR  of the rotation matrix 
( ),nR  which realize all the rotations in 

three-dimensional space needed to align the orthogonal 
basis { ( )n

ae } (a = 1, 2, 3) of the M(n)-system with the 

orthogonal basis {eu} (u = x, y, z) of the L-system. 
Thus expression (2) can be written 
 

 (6) 
 

Now we calculate, using formula (6), the sum 
entering into expression (4): 
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 (7) 
 
Since the values q2 and b2 in expression (4) are in-
variants, the sum 2

,
uv

u v

a  is also invariant. That is why 

Eq. (7) consists only of the invariant terms, which are 
independent of the choice of the L-system. For example, 
 

 (8) 
 
which follows from the orthogonal properties of the 
rotation matrix ( ).nR   

The sum 
 

 (9) 
 

which expresses the convolution of the matrices ( )mR  

and ( ) 1[ ]nR   for different bonds m and n in a molecule, 
must also be invariant. As was shown in Ref. 13 on the 
basis of the properties of the three-dimensional rota-
tion group, expression (9) is the matrix element of the 
matrix ( , ),m nR  which aligns the two bases { ( )m

ae } and 

{ ( )n
be } (a, b = 1, 2, 3) of the local coordinate systems 

M(m) and M(n). Since the explicit form of the matrix 
( , )m nR  was not indicated,13 we shall do it here. 

Let the positions of two local bases { ( )m
ae } and 

{ ( )n
be } in the L-system be characterized respectively by 

two sets of angles m and n  (e.g., the Euler angles) 
for each bond m and n. Since the group R(3) of 
three-dimensional rotations (in contrast to the group 
R(2) of rotations in a plane) is noncommutative, the 
rule of group addition states only that 
 

 (10) 
 

i.e., there is no rule of simple additivity of angles in 
the group R(3), as for the group R(2). Hence, ex-
pression (9), written in matrix form, 
 

 
 

 (11) 
 

has elements which cannot be calculated in practice. 
The situation changes, however, if the vectors 

( )
2
me  and ( )

2
ne  are located in the common plane (m, n) 

which containes the bonds m and n, if they intersect, 
or parallels to these bonds, if they do not. There is no 
loss of generality under such choice of the directions of 
these vectors, because expression (9) is invariant with 
respect to the choice of these directions. In the basic 
relation (2) of the VO theory the bond polarizability 
ellipsoids are reduced to their principal axes, but in the 
L-system only the directions of the vectors ( )

1 ,me  ex-
tending along the bonds themselves, are fixed. As 
regards the vectors ( )

2 ,me  one can only say that they are 

located in the planes P(m), which are perpendicular to 
the corresponding bonds. Within these planes P(m) we 
can place the vectors ( )

2
me  in any way we want, but the 

characteristics of the polarizability ellipsoids — the 
principal values of the bond polarizability ( )m

a  — do 
not change in any case. So in the process of calculating 
the double sums 

m n m
   entering into expression (7) 

for one and the same bond m and different bonds n and 
n we can subsequently locate the vector ( )

2
me  in the 

planes (m, n) and (m, n), taking no care of how its 
orientation in the plane P(m) changes, for the invariant 
expressions (9), (7), and (4) do not depend on the 
direction of this vector. This is all a consequence of the 
additivity of the VO theory, which excludes the 
mutual influence of bonds in the relation (2). 

The choice of directions of the vectors ( )
3
me  and 

( )
3
ne  now causes no difficulties. As is ommonly ac-

cepted in the vibrational spectroscopy,1,8,9 for the 
noncollinear molecule YmÕYn the vectors ( )

2
me  and 

( )
2
ne  are arranged in the plane (m, n) in such a way 

that both are directed inside valence angle between the 
bonds. Hence, since the bases { ( )m

ae } and { ( )n
be } are both 

orthogonal and right-handed, it follows that it is 
necessary to set ( ) ( )

3 3 ,n ne e   so that both vectors 
remain perpendicular to the plane (m, n). 

Taking the above remarks into account, one can 
now easily calculate the elements of the matrix ( , )ˆ m nR  
in expression (11): 
 

 (12) 
 

The matrix ( , )ˆ m nR describes the rotation by the angle 
mn in the plane (m, n), which brings in the bond m in 
line with the bond n, simultaneously the reflection of 
the vector ( )

3
me  takes place in this plane and, as a 

result of these transformations, the vector ( )
3
me  turns 

into the vector ( )
3 .ne  

Thus, the invariant sum in expression (9) is equal to 
 

 (13) 
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where, as follows from expression (12), the matrix 
( , )ˆ m nR  does not depend on the choice of the L-system, 

but is determined only by the value of the valence angle 
mn between the bonds. On the basis of expression (7), 
(8), and (13) we find an invariant expression for the 
anisotropy of the molecular polarizability: 
 

 
 

 (14) 
 

This expression for g2 takes the main idea (the 
idea of additivity) of the VO theory in molecular 
optics to its logical conclusion. It substantially sim-
plifies the procedure of calculating the EOP ( )m

a  
based on the experimental data, as will be demon-
strated in subsequent papers. 
 
INTENSITIES OF RAMAN LIGHT SCATTERING 
 

An invariant expression of the type (14) can also 
be derived for the invariant (g)2 of Raman spectros-
copy, which together with (b)2 enters into the defi-
nition of the absolute intensity or scattering power 
(SP) of a molecule: 
 

 (15) 
 
where l is the number of the normal molecular vi-
bration active in Raman scattering. The parameters 1b  

and ( 1g )
2 are defined by analogy with expressions (3) 

and (4) for the tensor 
 

 (16) 
 
of the derivative of the polarizability of the molecule 
with respect to the normal coordinate Q1. 

Raman electrooptical parameters include in ad-
dition to the parameters ( )m

a  the derivatives 
 

 (17) 
 

of the principal values of the bond polarizabilities with 
respect to the internal coordinates qm (changes in the 
bond lengths), which together with the coordinates mn 

(changes in the valence angles) form the system of 
valence-force vibrational coordinates.1 The electroop-
tical parameters ( )m

a
  are sufficient for the description 

of valence molecular vibrations; as for deformational 
and valence-deformational vibrations, it is necessary to 
differentiate the molecular polarizability tensor auv with 
respect to the angle coordinates , on which, according 

to relation (2), the direction cosines of the bonds 
which vary during the indicated vibrations depend. 

The main problem of VO theory consists in 
calculating the derivatives with respect to  of the 
direction cosines, since (as was remarked by the author 
of this theory, Wolkenstein) "in the general case the 
calculation of the derivatives of these cosines by va-
lence-force coordinates ó can be very difficult".1 For 
solving this problem two methods have been worked 
out in literature. 

Wolkenstein and Eliashevich6 introduced the 
valence-optical angular coordinates , which are 
changes in the angles between the bonds and the 
coordinate axes. In this method the transformation 
from the valence-optical coordinates to the symmetry 
coordinates is very cumbersome, because it is necessary 
to consider, in addition, the condition of vanishing the 
components of the molecular angular momentum 
vector during the vibrations. Suffice it to say that for 
a simple noncollinear molecule ÕY2 calculation of the 
invariants (b)2 and (g)2 occupies seven pages in 
Ref. 1, while the components of the tensor uva  are 
listed in a two-page table. 

Another way of calculating the derivatives of the 
direction cosines was proposed by Long,7 Ferigle and 
Weber,14 and Gribov.15 According to this method, in 
order to differentiate the cosines, one should, first, 
turn to the derivatives with respect to the atomic 
displacements r1 As a result, the gradients of the 
direction cosines now appear in the theory, and are 
calculated in Refs. 14 and 16. Calculations of in-
variants by this method remain as cumbersome as 
before.8,9 Besides, in the technique for calculating the 
invariants (b)2 and (g)2 (i.e., in the electrooptical 
problem) there appear matrices which enter into the 
solution of the mechanical problem; the latter, how-
ever, is independent of the electrooptical one. 

In both methods one must first define the direc-
tion angles between the axes of the bond polarizability 
ellipsoids and the axes of the L-system, when the 
molecule is in the nonequilibrium position in the 
process of vibrations. It is clear that this problem may 
have no solution for molecules, having a sufficiently 
complex space structure. Therefore in these methods 
the question about solving the electrooptical problem 
becomes dependent on the possibility of determining 
the direction cosines and calculating their derivatives. 

In this connection another question arises: why is it 
necessary to develop a sophisticated technique of dif-
ferentiation of the direction cosines with respect to  and 
then to carry out cumbersome calculations of the Raman 
invariants (b)2 and (g)2 if the latter, by definition, are 
independent of the cosines and their derivatives? The 
situation becomes paradoxical and it is quite natural to 
attempt to develop a method, analogous to that dem-
onstrated for the case of molecular optics in the previous 
paragraph, which should enable one to find an invariant 
expression for (g)2 (such an expression for the invariant 
(b)2 is known1), which is independent of the nonin-
variant direction cosines and their derivatives. 
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For this purpose we shall transform in Eq. (16) 
from the derivative with respect to the normal coor-
dinate Q to the derivatives with respect to the internal 
coordinates q and  by introducing the corresponding 
form coefficients Lq and L of the vibration: 
 

 
 

 (18) 
 

In the zeroth-order approximation of the VO 
theory the invariant 1b  (if we do not transform to the 
symmetry coordinates) is equal1 to 
 

 (19) 
 

where  ( )
1 1 0

/m
q mL q Q    is the form of the valence 

vibration. 
The anisotropy (g)2 of the tensor uva  is defined on 

the basis of an expression analogous to expression (4): 
 

 (20) 
 

so that the problem is reduced to the calculation of the 
sum entering into expression (20), which, according to 
expression (18) can be represented in the form 
 

 
 

 (21) 
 

The terms on the right-hand side of expression (21) 
represent the valence, deformational, and va-
lence-deformational contributions to the anisotropy 
(g)2, respectively (we do not consider here nonplanar 
vibrations, which require special consideration). 

The essence of our method consists in calculating 
invariant constructions, which appear in expression 
(21) when we substitute definition (6) for the tensor 
auv, without calculating the derivatives ( , )uv qa   di-

rectly. In particular, the second term on the right-hand 
side of Eq. (21) after the indicated substitution reads 
 

 
 

 
 

 (22) 
 

After differentiating the product of the matrices 
( )ˆ mR  with respect to , according to relation (8), there 

appears the invariant construction in Eq. (22) 
 

 
 

 (23) 
 

which is an antisymmetric tensor: ( ) ( ),m m
ab baA A   and 

consequently its diagonal components ( )m
aaA  equal zero 

(the latter fact for the components ( )
22
mA  and ( )

33
mA  was 

mentioned in Ref. 9). Taking relation (8) and these 
properties of the tensor ( )m

abA  into account, one can 
reduce the sum on the right-hand side of Eq. (22) to 
the form 
 

 
 

 (24) 
 

The double sum over, m and n  m in Eq. (22) is 
equal to 
 

 
 

 (25) 
 

if one takes into account relation (13), which was de-
duced in the previous argument. The matrix products 

( ) ( )
( )

ˆ ˆm nR R 
  entering into expression (25) can be cal-

culated by differentiating expression (13) with respect 
to , if we consider the min-dependence of the valence 
angle uv, which changes during the deformational 
vibrations. As is customary in vibrational spectros-
copy, the internal coordinate  is equal to the change in 
the valence angle, taken with the opposite sign,1,17i.e., 
 

 (26) 
 

where 0
mn  is the equilibrium value of the angle. 

Hence, 
 

 (27) 
 

Thus, we have 
 

 (28) 
 
where, according to Eqs. (13) and (27), 
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 (29) 
 

Using the models of noncollinear triatomic 
molecules of the types YmXYm and YmXYn, one can 
find an explicit form for the tensor ( )m

abA  and the 
invariant sums over u and v remaining in Eqs. (24) 
and (25), which contain the direction cosines ( )m

auR  or 

their derivatives ( )
( ).

m
auR 

  In this case there is no loss of 

generality in our treatment, since expressions (22), 
(24) and (25) contain sums over m and n, i.e., they are 
additive in these triatomic fragments. 

Most suitable for the description of triatomic 
molecules is the coordinate system1,2,8,9 in which both 
bonds are located in the plane (x, y), so that the 
negative direction of the Oy axis serves as the bisector 
of the valence angle  between the bonds. In the 
chosen coordinate system (the L-system) the matrices 
of the direction cosines for the bonds have the form8 
 

 
 

 (30) 
 

Note that matrices (30) are defined solely for the 
sake of convenience. The invariant constructions, 
obtained below, do not depend on the choice of the 
L-system and, as one can easily verify, these con-
structions will retain their form in other coordinate 
systems. On the other hand, the components of the 
tensor auv, as shown in Refs. 1, 8, and 9, will change; 
obviously, their form in different coordinate systems 
for the tensor components are not invariant relative to 
the choice of coordinate system. 

Differentiating the matrices (30) with respect to  
with the help of relation (27) and calculating the sums 
over u one can obtain the following relations: 
 

 
 

 (31) 
 

 (32) 
 

 (33) 
 

It is not difficult to carry out remaining calculations 
with the help of the obtained equations (23), (28) and 
(31)–(33). As a result we find (according to the 
definition (20) and taking into account Eq. (19)) 
 

 
 

 
 

 
 

 
 

 
 

 
 

 (34) 
 

where  ( )
1 1 0

/m
mL Q     is the form of the defor-

mational vibration. Expression (34) is written in terms 
of the internal coordinates. One must transform to the 
symmetry coordinates according to the known 
rules,1,8,9 when the electrooptical problem for the 
specific vibrations of definite molecules is solved. 

The obtained expression (34) for the Raman in-
variant (g)2 allows one to bypass the cumbersome 
technique of the preliminary calculation of the com-
ponents of the derivative of the molecular polariza-
bility tensor .uva  No care one should take of the 
convenient choice of the L-coordinate system. As an 
example, we shall consider the Raman invariants, 
given in Eqs. (19) and (31), for the vibrations of the 
ÕY2 molecules (which were obtained earlier11 by 
means of the standard technique8 of calculating the 
tensor uva  components). Now, transforming to the 
symmetry coordinates, we obtain automatically: 

— for the symmetrical valence vibration 1 
 

 (35) 
 

 (36) 
 

– for the antisymmetrical valence vibration 3 
 

 (37) 
 

— for the symmetrical deformational vibration 2 
 

 (38) 
 

The case of —bonds, for which 3 = 2 and 3 2,     is 
considered here. 
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It should be mentioned that, as one can see di-
rectly from expressions (19) and (34), the Raman 
intensity for the valence vibrations is determined by 
the values of all three EOP’s a  (a = 1, 2, 3) for each 
band. That is why the SP of molecules for the valence 
vibrations of -bonds and -bonds (for which 3  2 
and 3 2),     having the same chemical composition 
(e.g., for the bonds C–O and C = 0), must be dif-
ferent. For deformational and valence-deformational 
vibrations this is not the case. In the corresponding 
terms of the expression (34) only the EOP’s 1, 2 and 

1,  2  make a contribution (for the last term in 
expression (34) this follows from the expression for the 
matrix (29), the elements of the third row and third 
column of which are equal to zero). Hence, the pa-
rameters 3 and 3  have no influence on the absolute 
Raman intensities for the vibrations which take place 
in the plane perpendicular to the vectors ( )

3
me  and ( )

3
ne  

during which the valence angles between the bonds 
change. So the intensities of the deformational and 
valence-deformational vibrations for fragments con-
taining - and -bonds of the same chemical nature 
must be equal. Experimental verification of this pre-
diction would have, no doubt, great interest for both 
Raman spectroscopy and quantum chemistry. 
 

ON THE FIRST APPROXIMATION  
OF THE VALENCE-OPTICAL THEORY 

 

The idea of additivity of dipole moments and 
polarizability of valence bonds in a molecule, which 
was transplanted by Wolkenstein from molecular 
optics to vibrational spectroscopy, proved to be very 
constructive in investigating the electrooptics of mo-
lecular vibrations. The success of the additivity con-
cept in molecular optics and spectroscopy is explained 
by its adequacy to the principle of valence chemistry, 
according to which a molecule is considered as a 
totality of chemical bonds, which play the role of its 
structural elements. 

However, in chemistry a valence scheme is ap-
proximation, since in the quantum system the primary 
building blocks are the nuclei of atoms and electron 
densities, while their interactions lead, in particular, 
to the formation of chemical bonds. It is clear that the 
bonds also interact, but the bond interaction is weaker 
than that of the atoms, forming an individual bond. 
The interaction between the bonds manifests the 
nonadditivity effect in valence chemistry, but in most 
cases the nonadditivity is a small correction to the 
additive properties. 

However, there are some molecules which 
Wolkenstein called "nonadditive." In these molecules 
"the electron clouds cannot be located on separate 
bonds, but rather belong to the whole molecule. In this 
case physical meaning vanishes not only for the va-
lence-optical scheme, but for the very idea of the 
valence bond itself.”1 Thus, the author of the VO 
theory sees the limit of validity of his theory in the 
nonadditivity, which, first of all, manifests itself in 

the interaction of the bonds, and in the utmost case it 
deprives of physical meaning the chemical bond itself. 

In this situation it would be logical to speak of the 
approximate character of the VO theory, in which the 
additivity property enters as a principal component of 
its construction. So the rejection of additivity should 
be recognized as the rejection of the VO theory, itself. 
Nevertheless, historically the further development of 
the VO theory followed another path: the corrections 
for nonadditivity were included in the theory as a 
first-order approximation. In this connection, we shall 
analyze how contradictory the inclusion of the 
first-order approximation in the VO theory is to the 
logic of the construction of the theory. 

Relation (1), in which the bond polarizabilities 
are additive, is basic for the VO theory which describes 
Raman scattering. Hence, the VO theory supposes that 
in the equilibrium state of the molecule the chemical 
bonds do not interact. During the vibrations changes 
in the bond lengths and the valence angles remain 
almost two orders of magnitude less than their equi-
librium values. The bond interactions due to the 
vibrations, therefore, cannot grow rapidly in com-
parison with the initial interaction of the bonds in the 
equilibrium state of the molecule. If the latter was 
neglected in the initial relation (1), there is no reason 
to include it for small molecular vibrations. 

Formally, the bond interaction during molecular 
vibrations is accounted for within the framework of 
the VO theory by taking into account the bond po-
larizability derivatives with respect to changes in the 
lengths of the other bonds, which are obviously equal 
to zero in the zeroth-order approximation. They also 
consider the polarizability derivatives with respect to 
changes of the valence angles, which are not equal to 
zero in the first-order approximation. Thus, the in-
troduction of the derivatives ( ) /n

a tq   (t  n) 
( )

1/n
a m   into the theory is the basis of the first-order 

approximation in the VO theory for Raman scattering. 
Originally, all the calculations of the electroop-

tics of molecular vibrations were made in the ze-
roth-order approximation of the VO theory.1 Why did 
other scientists later use the first-order approximation 
in their work? The answer was given in Ref. 8: "the 
zeroth-order approximation of the VO theory is un-
suitable for calculating the electrooptical parameters 
of polyatomic molecules." However, only a few ex-
amples are given in Ref. 8 of the unsuitability of the 
zeroth-order approximation — the basic example 
being the molecules CH4 and CCl4. We shall examine 
these cases. According to Ref. 8, within the ze-
roth-order approximation one cannot extract such 
information about the value of the difference of the 
principal bond polarizabilities  = 1 – 2 from the 
experimental data on Raman cross sections of the E 
and F types of vibrations of the mentioned molecules. 
Thus, in methane for the C–H bond from the data on 
the E-type vibration one finds the value 
(C–H) = 0.313 Å3, while for the F-type vibration 
 = 0.086 Å3. Correspondingly, for the CCl4 
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molecule we have the values (C–Cl) = 2.96 Å3 
(from the E-type) and  = 4.14 Å3 (from the F-type). 

Regarding this point, we should note that if the 
corrections of the first-order approximation enable one 
to remove the differences in the value of , which 
reach 40% for the C–Cl bond and 260% for the C–H 
bond, then one cannot call them corrections in the 
usual sense of the word. In this case the hierarchy of 
the introduced approximations loses its meaning, 
because the EOP’s, calculated in the first-order ap-
proximation, differ by hundreds of percents from the 
values of the same parameters obtained in the ze-
roth-order approximation. Hence, the VO theory 
ceases to be self-consistent after incorporating the 
first-order approximation. In other words, rejection of 
the zeroth-order approximation is tantamount to re-
jection of the VO theory itself. However, as will be 
demonstrated below, the examples of the molecules 
CH4 and CCl4 leave no grounds for doubt as to the 
validity of the zeroth-order approximation for the VO 
theory describing the electrooptics of Raman scat-
tering. In this connection we shall consider a more 
detailed comparison of the theory with experiment for 
these molecules. 

Transforming in Eqs. (19) and (34) from the 
internal coordinates to the symmetry coordinates for 
vibrations of ÕY4-type molecules, we obtain the 
well-known1,7,8 expression for the Raman invariants: 
for the full symmetrical valence vibration 1 of A1-type 
symmetry: 
 

 (39) 
 

for the doubly-degenerate deformational vibration 2 

of E-type symmetry: 
 

 (40) 
 

for the two triply-degenerate valence-deformational 
vibrations 3 and 4 of F2-type symmetry: 
 

 
 

 (41) 
 

The fact that the C–H and C–Cl bonds are -bonds is 
taken into account here. 

It is very important to emphasize that the forms of 
vibration entering into expressions (39)—(41) are 
calculated approximately in the solution of the me-
chanical vibrational problem. That is why the calcu-
lated values of these forms introduce a substantial error 
in the determination of the EOP from the experimental 
data on Raman cross sections. In connection with this, 
an indirect check of the values of the vibrational form 
coefficients, which are used in the solution of the elec-
trooptical problem, is always necessary. 

According to Eq. (40), only the value 2
EL  of 

the form can be verified directly, because the po-

larizability difference  is measured with rather good 
accuracy in molecular optics experiments4: 
(Ñ–Í) = 0.24 Å3 and (Ñ–Ñl) = 1.6 Å3. The 
values of the form 2

EL  = 1.23  1020 g–1/2  cm–1 for 

the CH4 molecule8 and 2
EL  = 0.133  1020 g–1/2  cm–1 

for the CCl4 molecule.18 Using these values of 2
EL  we 

obtain the following values of the SP for these mole-
cules: 2 4(CH )vI  = 1.63  10–8 g–1  cm4  molec–1 and 

2
vI (CCl4) = 0.845  10–8 g–1  cm4  molec–1, whereas 

the corresponding experimental values of the SP are 
1.67  10–8 (CH4) (Ref. 19) and 0.99  10–8 (CCl4) 
(Ref. 20). Thus, the theory is in good agreement 
with experiment for the 2 band, and we can trust the 
values of the form 2

EL  cited in Refs. 8 and 18. 

More complicated is the case of the other form 
coefficients of the vibrations. They are also given in 
Refs. 8 and 18 (in units of 10–12 g–1/2) for the CH4 
molecule: 1

1
0,77,A

qL   2

3
0.81,F

qL   2

4
0.03,F

qL    
2 2

3 3CH 0.11,F FL r L      2

4
1.2;FL   for the CCl4 mole-

cule 1

1
0,136,A

qL   2

3
0.29,F

qL    2

4
0.29,F

qL   
2

3
0.204,FL   2

4
0.00155.FL    These values can be 

verified if we calculate the mean square amplitudes of 
the atomic vibrations according to relation (21): 
 

 (42) 
 

where 
 

 (43) 
 

and compare them with the results of the electron 
scattering measurements given in Ref. 21. 

For ÕY4-type molecules, the mean square am-
plitude of the vibrations of the Õ–Y bond (taking into 
account the symmetry coefficients relating the vibra-
tional forms Li1 and 1

s
iL ) is equal to 

 

 
 

 (44) 
 

where 1 = < Q1
2
 . Correspondingly, the mean square 

amplitude of the vibrations of the atoms Ó … Ó is 
equal to 
 

 
 

 (45) 
 

According to these formulas and the above values of the 
vibrational forms we obtain for the C-H bond in the CH4 
molecule lC-H = 0.0543 Å, while experiment21 gives 
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lC-H = 0.0764 Å, which is 40.7% higher than the 
theoretical value. Correspondingly, for lH-H we obtain 
0.154 Å (theory) while experiment gives 0.119 Å, i.e., 
the theoretical value is 29.4% higher than the ex-
perimental one. Note that the same results are also 
obtained for the molecules CD4 and CT4, for which the 
vibrational form coefficients are also given in Ref. 8. 
We arrive at the necessity of introducing the correction 
factor kq on the basis of the purely empirical relation 
 

 (46) 
 
Comparison of the theoretical and experimental values 
of lC-H shows that kq = 1.407. Consequently, we find 
( 1

1
A
qL )exp = 1.083, ( 2

3
F
qL )exp = 1.14; ( 2

4
F
qL )exp = —0.0422. 

From Eq. (45) and the empirical value k = 0.62 we 
find ( 2

3
FL )exp = — 0.068; ( 2

4
FL )exp = 0.74, while 

keeping the value of 2
EL  fixed in accordance with the 

above-made conclusion about the deformational form 
coefficients. 

The above method of "recounting" the vibrational 
forms is, of course, an empirical one. But in situations in 
which the form coefficients are calculated approxi-
mately, one may speak only of the consistency of the 
latter with two different kinds of experimental data: 
1) electron scattering measurements of the mean square 
amplitudes and 2) the Raman cross sections of the 
spectral lines that are determined by these coefficients. 

The consistency of the recounted form coefficients 
for the CH4 molecule are confirmed by calculation of 
the theoretical values of the SP of the molecule for 3 
and 4 bands and subsequent comparison with ex-
periment, which according to the experimental value 
of the SP (Refs. 22 and 23) for the 3 band is 

3
vI (ÑÍ4) = 26.98  10–8; hence, using the corrected 

values of ( 2
3

F
qL )exp and ( 2

3
FL )exp we find according to 

Eqs. (41) that  = 1.505 Å2. Using these values of 
 and , we arrive at a theoretical value of the SP 
of the molecule for the 4 band 

4 4 heo(CH )v
tI   0.0937  10–8, which with 12.5% ac-

curacy coincides with the upper bound 0.0833  10–8 
of the experimental value.22 

Using the experimental value for the SP of the 1 

band –8
1 4 theo(CH ) 130.167 10vI    (Ref. 23), on the 

basis of Eqs. (39) we find that Å2
1 2 2.3555 ,      

which together with the above-found value of the 
linear combination Å2

1 2 1.505      gives the fol-
lowing values for the EOP’s for the C–H bond: 
 

 
 

 (47) 
 
The principal bond polarizabilities used here are 
1(C–H) = 0.81 Å3 and 2(C–H) = 3(C–H)=0.57Å3 

(Ref. 4). The values of the EOP, obtained in 
Eqs. (47), are close enough to those given in Ref. 1, 
which were also calculated in the zeroth-order ap-
proximation of VO theory. 

The mean square amplitude for the CCl4 molecule, 
calculated on the basis of Eq. (44), lC–Cl = 0.063 Å, 
exceeds the experimental value 0.054 Å by 16.7%. Thus, 
the recounting coefficient kq = 0.855, i.e., 1

1( )A
qL exp = 

= 116, 2
3 exp( )F

qL  = –0.248, and 2
4 exp( )F

qL  = 0.248. The 

theoretical value of the amplitude lCl…Cl = 0.046 Å is 
1.5 times less than the experimental value 0.069 Å. If 
one introduces a correction coefficient k to the values 
of the vibrational forms, the set of experimental data 
for the mean square amplitudes should disagree with 
the data for the Raman cross sections. Thus, noting 
that in contrast to the molecules CH4, CD4, and CT4 
the form coefficient 2

4
FL  for CCl4 molecule is ano-

molously small,18 we introduce an empirical correction 
factor (on the basis of the experimental value lCl…Cl) 
only in the theoretical value of this form, leaving the 
remaining forms 2

2
FL  and 2

3
FL  in Eq. (45) unchanged. 

In this way we find 2
4 exp( )FL  = –0.196. 

The remaining calculations for the CCl4 molecule 
are analogous to the case of methane. From the ex-
perimental data on the Raman cross sections for the 1 

and 3 bands20 we find two combinations of the EOP’s: 
Å1 2 12 7.32      and Å,1 2 3.76      from which 

we obtain the EOP’s for the C–Cl bond: 
 

 
 

 (48) 
 
The bond polarizabilities are 1 (C–Cl) = 3.59 Å3 

and 2 (C–Cl) = 3 (C–Cl) = 1.09 Å3 (Ref. 4). 
We can confirm the obtained values of the EOP’s and 
of the form 2

4
FL  by comparing the theoretical value of 

the SP for the 4 band 1 4(CCl )v
theoI  = 2.914  10–8 

with experiment. It turns out that it coincides with the 
experimental value 2.944  10–8 (Ref. 24) with 1% 
accuracy. 

Thus, we conclude that the zeroth-order (addi-
tive) approximation of the VO theory is in full 
agreement with the experimental data of molecular 
optics and Raman spectroscopy for the CH4 and CCl4 
molecules. The contrary conclusion for these mole-
cules, made in Ref. 8, is evidently based on the use of 
unreliable form coefficients, which were calculated 
approximately and which, as has been demonstrated, 
disagree with the electron scattering experiments for 
the mean square amplitudes. 

The first-order approximation, incorporated in 
the theory to "correct for" the predictions of the 
zeroth-order technique, leads the VO theory up a blind 
alley. First of all, -bonds cannot exist in the 
first-order theory, for the interaction of the po-
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larizability bond ellipsoids of different bonds deprives 
them of axial symmetry.1 But such a conclusion of the 
first-order theory contradicts to the principles of 
quantum chemistry concerning the nature of ordinary 
chemical bonds. Besides, in a strict consideration of 
the problem in the first-order approximation the de-
rivatives (1)

1 2/ q   and (1)
2 2/ ,q   as well as com-

binations of the type (1) (1)
1 34 2 34/ /      must 

contribute to the SP of molecules of the type ÕY4, 
which have the highest symmetry. These rather strange 
EOP combinations cannot be determined from ex-
periment in the semiempirical theory, and it was 
apparently for this reason that they were omitted in 
Ref. 8, though the theory cannot properly be called a 
first-order approximation without them. 

IN complex molecules, which have low symmetry, 
the number of parameters of the first-order approxima-
tion, which it is fundamentally impossible to calculate 
or determine from experiment, increases so strongly that 
the VO theory ceases to be a theory in the full sense of 
the word, capable of quantitatively explaining the 
integral characteristics of Raman scattering. 

The VO theory is based on physically clear ideas 
of additivity, which serve as a good approximation for 
the description of the electrooptics of molecular vi-
brations. This approximation, which has historically 
been called the zeroth-order approximation, can de-
scribe the Raman experiment with greater or lesser 
accuracy. But it is in principle impossible to refine the 
predictions of the VO theory by inserting so-called 
first-order corrections into it. 

The author is grateful to G.I. Zhitomirskiĭ for 
pointing out how to calculate the elements of matrix 
(11). 
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