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An optical phase algorithm for reconstructing the characteristics of refraction 
channels is proposed. The algorithm is based on transverse optical sounding (transil-
lumination) of the channel in different directions. Diffraction gratings are used in 
standard photodetectors. 

 
 

Refraction channels (in air or other media) can be 
created by different methods, for example, photomet-
rically.1–3 The characteristics of such channels are 
analyzed by different methods,1–4 in particular, longi-
tudinal sounding of the channel with a narrow beam. 

The dielectric constant (index of refraction) in the 
refraction channel is usually a real quantity (no ab-
sorption) and varies continuously across the channel. 
In the scheme of transverse optical sounding of the 
refraction channel the phase of the received wave 
depends on the characteristics of the channel. The 
phase increments in the optical wave can be described 
quite accurately by the method of geometric optics.1,2 
However square-law photodetectors (which are usu-
ally used in practice) do not respond to the phase of the 
wave. For this reason, more complicated receiving 
systems (for example, optical heterodyning systems) 
must be used to analyze the phase of the signal. It is 
obvious that in the process the methods used to process 
the received signal also become more complicated. 5 

In this paper we propose an optical phase algo-
rithm for reconstructing the characteristics of refrac-
tion channels. These characteristics usually include the 
effective radii of the channel in different directions, 
the dielectric constant on the axis of the channel, and 
other parameters of the distribution of the dielectric 
constant across the channel. The algorithm is based on 
transverse optical sounding of the refraction channel, 
under the condition that the position of the axis of the 
channel is known with some accuracy. Since the 
channel characteristics can be constructed best by 
transilluminating the channel in different directions, 
the proposed method is a tomographic method. 

Reconstructive tomography is now being actively 
developed for performing diagnostics of phase objects 
(for example, in fluid, gas, and plasma mechanics, etc. 
).6–8 The mathematical basis for tomographic recon-
struction is the Radon transformation, in which to 
functions defined in a volume there are associated 
integrals of the functions over hyperplanes. A priori 
constraints, connected with the symmetry properties 
of the object under study, are often introduced into the 
reconstruction problem. In the one-dimensional case 
this results in an Abel integral equation. 

Until recently, any progress made in the methods 
of reconstruction of objects with high temporal and 

spatial resolution involved the improvement of in-
strumentation.7 The phase algorithm proposed here 
requires simpler instrumentation than the traditional 
interferometric methods for reconstructing the prop-
erties of phase objects. The purpose of this paper is to 
illustrate the effectiveness of this method (the possi-
bility of three-dimensional reconstruction) for the 
example of the tomography of refraction channels. 

Let the refraction channel lie between the source 
and the detector and let it be perpendicular to the 
source-detector line. We assume that the source is a 
point source with wavelength . The source can move in 
a plane parallel to the input aperture of the detector. 

The receiver consists of the standard receiving, 
telescope, in which the received flux is divided into 
three channels. Standard square-law photodetectors 
are placed in each receiving channel (in the focal plane 
of the telescope). Matrices (transparencies) with fixed 
intensity transmittances n (n = 0, 1, and 2 is the 
channel number) are placed in front of the 
photodetectors: 
 

 
 

 (1) 
 

Íåãå ó is one of the transverse coordinates in the focal 
plane of the detector (the ó axis is perpendicular and the 
z axis is parallel to the channel axis; óz). A simple 
model of the matrix 1 is a diffraction grating whose lines 
are separated by a distance d = 2/, where  is the 
spatial frequency of the grating (in m–1). The matrix is 
the same diffraction grating, but shifted by d/4 relative 
to 1 along the ó axis. 

Let an optical wave u(x, ),  = (y, z), which has 
traversed a distance x (across  the refraction channel), be 
incident on the receiving aperture of a telescope of radius 
at. The intensity distribution in the image plane (at a 
distance F from the receiving lens) has the form9,10 
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where F0 is the focal length of the telescope and 
k = 2/. 

We denote the electric signals (photocurrent) at the 
output of the photodetector in the nth channel as En. 
Then 
 

 
 
Using in this relation the representation (2) we obtain 
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In the approximation of geometric optics the field 
of the spherical wave u(x, ) is given as follows:9,10 

 

 
 

 (4) 
 

Here 0 = (01, 02) is the radius vector of the center of 
the source; 1 =  – 1, where (x, ) is the real di-
electric constant of the medium; and, the constant u0 is 
determined from the intensity Is(x) of the spherical wave 
at a distance x: u0

2= Is(x)(2x/k)2, Is(x) = (x, R, 0). 
The function  can be written, with the help of the 
expression (4), in the form 
 

 
 

 
 

 (5) 
 

We shall assume further that within the field of 
view of the detector the characteristics of the channel 
remain virtually constant along the channel (along the 
z axis). This means that the dielectric constant 
1(x, ó, z) in Eq. (5) does not depend on z. For this 
reason, the profile of 1 can be given by the following 
model function: 
 

 (6) 
 

where 10 = const is the dielectric constant on the axis 
of the channel; x0 and y0 are the coordinates of the 
channel axis; and, ax and ay are the radii of the channel 
along the x and ó axes, respectively. [The origin of the 
coordinate system lies in the plane of the radiator on the 
optical axis of the receiver. For this reason, x0 is the 
distance from the origin of the coordinate system up to 
the channel axis in the direction of propagation of the 
sounding wave, i.e., along the x axis; y0 is the distance 
from the optical axis of the receiver to the channel axis.] 

For the profile (6) the function J(R, ) in 
Eq. (5) has the form 
 

 
 

 
 

 (7) 
 

Here the limits of integration were replaced by infinite 
limits, i.e., the function 1 given by Eq. (6), which 
defines the channel, is concentrated on a finite section 
of the path (2ax ` x). 

For the further analytical analysis we shall sim-
plify the expression (7). For this we require that the 
conditions 
 

at ` x, 01 ` x, F/k ` 2x 
 

be satisfied (the path length is greater than the 
transverse displacement of the source and radius of the 
detector). It then follows from the relations (3), (5), 
and (7) that in the region R1 d at, which is significant 
for the integration in Eq. (3),  ` 1. We shall also 
assume that in the x direction the source lies near the 
channel, for example, at a distance of several radii ax 

from the channel axis. In this case, for bounded values 
of the ratio ax/ay (channels which are not strongly 
oblate along the ó axis), from the condition  ` 1 
there follow the conditions ax/ay ` 1, x0/ay ` 1. 
Expanding' Eq. (7) for finite values of m in a Taylor 
series in  and retaining the first three terms in the 
expansion, we obtain 
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Substituting Eq. (8) into Eq. (5) and Eq. (5) into 
Eq. (3), we find 
 

 
 

 
 

 
 

 
 

 (9) 
 

The expression (9) is the basis for finding the 
unknown parameters 01, ax, ay of the dielectric con-
stant distribution in the channel. In a chosen (fixed) 
region where tan0Q is a monotonic function it follows 
from Eq. (9) that 
 

 (9a) 
 

Choosing the position of the source so that m = 0 
(01 = ó0) we obtain, for example, 
 

 
 (10) 
 

Changing the path length (x  x1) and (or) the 
longitudinal position of the source (x0  x01), we 
obtain the second equation 
 

 (11) 
 

From these equations, dividing one by the other, we find 
the longitudinal (along the x axis) radius of the channel 
 

,
 

 

We shall now transilluminate the channel in a 
direction perpendicular to the preceding direction. For 
the new direction the radii ax and ay are interchanged. 

For this reason, applying the preceding procedure 
(Eqs. (10) and (11)), we find the radius ay. Using the 
known values of ax and ay we find from Eqs. (10) or 
(11) the value of the dielectric constant on the channel 
axis 10. 

Thus if the position of the channel axis known, 
then ax, ay, 10 can be found from Eq. (9). The values 
found for ax, ay, 10 can be used as the starting in-
formation for a more detailed description of the profile 
1(x, ó, z) in the channel. For example, expressing the 
profile 1 as a finite sum of functions of the form Eq. (6) 
 

1(x,y,z) = 

 
 

where ( )
10 ,n  axn, ayn are unknown parameters, N, x, y 

are fixed parameters, x ` ax; y ` ay; and x0, y0 are 
the coordinates of the channel axis, we obtain from 
Eq. (9) or (9a) the system of equations for finding 

( )
10 ,n  axn, ayn for –N  n  N. This system of equa-

tions is obtained either by moving the source (along 
the x and ó axes) or by moving the detector (also along 
the x and ó axes) or by changing the direction of 
transillumination of the channel. 

When the position of the channel axis is un-
known, 1 given by the formula (6) will be a function 
of z. Expressing the profile 1 by an appropriate ex-
pression with a collection of unknown parameters, a 
system of equations for these unknown parameters can 
also be derived from Eq. (9) or (9a). 
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