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The process of gravitational convection which arises as a result of the heating of a gas 
by an optical beam as it propagates in a horizontally positioned cell with the square cross 
section is considered. A program which can be used to calculate the structure of the planar 
convective flow and the temperature distribution over the cross section of the cell has been 
developed. The operational efficiency of a modal and segmented mirror for correction of 
the phase distortions appearing during the propagation of the optical radiation in the 
radiation-induced thermal inhomogeneities is investigated. 

 
 

The propagation of an intense coherent beair, in a 
horizontally oriented cell with the square cross sec-
tion, filled with a weakly absorbing gas with ab-
sorption coefficient a, is considered. Heating of the gas 
occurs as a result of photoabsorption, and, under the 
action of the buoyancy forces, a motion of the heated 
volume toward the upper cell boundary starts. As the 
beam propagates in the radiation-induced thermal 
inhomogeneities, distortions of the radiation phase 

2 / Tn T     appear, where  is the wavelength, T is 

the temperature profile, and Tn  is the derivative of 
the refractive index with respect to the temperature. 

The process of gravitational convection was 
previously studied in a qualitative way by the methods 
of similarity theory1,2 and numerically.4–6,9,10 In these 
studies, either the radiation beam, 1,2,5,6,9 or the ele-
vated temperature of one of the cell walls4,10 served as 
the heat source. Murokh5 considered a cell with the 
circular cross section and solved the problem of beam 
propagation in the cell in the geometric-optics ap-
proximation. The phase distortions for the case of a 
cell with square cross section were calculated in 
Ref. 6, in which the beam propagation was described 
in the parabolic-equation approximation. In this pa-
per, as in all those cited above, the convection is 
calculated in the planar—flow approximation, which 
corresponds to the case in which the cell length L is 
much greater than the effective beam radius a0.  

Mathematical formulation of the problem. The 
process of planar convective flow in the cell cross 
section in the Boussines approximation is described by 
the following system of equations3,4: 
 

 (1) 
 

 (2) 
 

 (3) 
 

Íåãå õ and ó are the horizontal and vertical co-
ordinates,  is the stream function associated with the 
local flow velocity by the relations 
 

 (4) 
 
 is the artificially introduced eddy function,3,4 and 
T is the temperature of the medium. Equations 
(1)—(3) arewritten in dimensionless form. The 
variables which enter in them are scaled in the 
following way: the eddy and stream functions are 
scaled to 0 =  and 0 = /l2, x and y to l, time to 
t0 = I2/, and the temperature to T0. The radiation 
intensity I is scaled to I0 = T0C/(al2). The di-
mensionless combinations Pr = /a and 
Gr = gl3T0/

2 are the Prandtl number and the 
Grashof number, where  is the kinematic viscosity, 
l is the transverse dimension of the cell,  is the 
density of the medium,  = 1/0/Ò is the volume 
expansion coefficient, g is the acceleration of free 
fall, a is the thermal conductivity, C is the heat 
capacity, and T0 is the characteristic temperature 
drop. Since there is an uncertainty in the last pa-
rameter in the given formulation of the problem, it is 
possible to choose any value, for example, T0 = 1C. 

The boundary conditions are specified in the fol-
lowing way: 

for the temperature 
 

 (5) 
 

and for the stream function 
 

 (6) 
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Here, the index "b" refers to the boundary line of the 
cell cross section, and n is the normal to the boundary 
line. The boundary condition for /n makes it . 
possible to obtain the boundary values of the eddy 
function. 

Numerical method. A uniform square grid (xi,j), 

where , 0,i j N  and the step h = 1/N, was speci-
fied over the cell cross section. For the temperature 
and stream functions, null boundary conditions were 
prescribed on the grid boundaries, and as—Woods 
boundary condition was employed for the eddy func-
tion.4,11,12 

The symmetric location of the heat source with 
respect to the vertical axis of the cross section makes it 
necessary to solve the problem for only half the grid. 
An implicit scheme4 which is a version of the method of 
variable directions was used to solve Eqs. (1) and (2). 
The solution of the equation according to this scheme 
is performed by the pass technique. The Poisson 
equation (3) was solved by expanding in a double sine 
series.7 A mixed-radix FFT algorithm,13 which allows 
one to vary the computational grid size within wide 
limits, was used to calculate the sine-transform. 

Calculation of the temperature profile. The 
temperature profile was assumed to follow the form of 
the Gaussian beam 
 

(7) 
 
The effective radius of the beam a0 scaled to l was equal 
to a0 = 0.075. The rest of the parameters of the problem 
were as follows: Pr = 1, Gr = 10, the time step t was 
chosen from the condition max ,ytV h   where max

yV  is 

the amplitude of the vertical component of the con-
vective flow velocity, and the beam power 
 

 (8) 
 
varied within the limits 10–3–103. The dynamics of the 
two-dimensional fields T, , and  was calculated on 
a PC and visualized using interactive graphics. 

With the radiation power increased to 103 the 
convective flow velocity grows by roughly another 
factor of 10, as a result of which a complex multivortex 
flow structure is formed. 

For low radiation power, e.g., P = 10–3, the 
effect of the thermal conductivity factor already be-
comes noticeable from the very beginning of the 
evolution of the convective process, and, as a result, 
the isothermal contours smooth out, and the process 
rapidly relaxes as a result of an intense heat exchange 
with the cell walls. 

For intermediate radiation power, e.g., p = 1, 
the thermal conductivity is manifested much more 
weakly and at later stages of the process since the 
convective flow velocity is increased by approximately 
a factor of ten. In this connection, the thermal con-

ductivity factor is manifested for the most part only at 
the stage at which the heated gas flows along the inner 
wall surfaces. Relaxation occurs with the attainment 
of a balance between the heat source power and the 
rate of heat exchange with the cell walls. 

The radiation power thus affects the structure of 
the two-dimensional temperature profile T(x, y) and 
especially the structure of the convective flow, 
characterized by the field . This effect, however, is, 
perceptible only for a very significant change in the 
beam power, since the velocity of the convective 
process depends on the power like P1/3. 

From the viewpoint of estimating the phase 
distortions and of the possibility of their compensa-
tion, the variation of the mode structure of the dis-
tortions of the phase of the optical radiation (õ, ó), 
which is proportional to the two-dimensional profile 
T(x, y), is of interest. In order to perform such an 
estimation, the standard deviation of the profile T 
from its mean value over the beam cross section was 
calculated 
 

 (9) 
 

where S is a circle of radius 2a0 with its center located on 
the beam axis and Tm is the mean temperature over S. 
The value T is equal to the standard deviation of the 
phase on the circle S to within a constant factor. Below, 
with the help of. a program which imitates the phase 
corrector operation, the distortions of the field T which 
remain after correcting the predistortions by the cor-
rector are computed, and then the standard deviation 

,C
T  which characterizes the residual phase distortions, 

is calculated from a formula identical to formula (9). 
The dependences of the ratio /C

T T   on the time after 
switching on the beam for various variants of the phase 
corrector are plotted in Figs. 1–3. 
 

 
 

FIG. 1. 
 

The residual distortions vs time after switching 
the beam on for three values  of P (0.001, 1, and 1000) 
are plotted in Fig. 1. The normalized time values in all 
the figures must be multiplied by a factor of 10–5 to 
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give the actual time in seconds. The curves in Fig. 1 
are calculated for the case of a mode corrector which 
compensates for the classical aberrations from tilt to 
spherical aberration, inclusive. It can be seen that the 
residual distortions increase as the power increases, 
that is, the spectrum of the phase distortions is shifted 
toward higher aberrations. In addition, these curves 
illustrate the increase in the amplitude of the fluc-
tuations of the parameters of the convective process 
with increase in the beam power. 

The dynamics of the residual phase distortions for 
the radiation power P = 1 in correcting for the fol-
lowing classical aberrations: 1) tilt, 2) tilt and de-
focusing, 3) tilt, defocusing, and astigmatism, 4) tilt. 

The dynamics of the residual distortions in the case 
of a segmented seven-element corrector with a hexagonal 
configuration of the segments is plotted in Fig. 3. Curve 
1 corresponds to correction of the mean phase within 
every segment, while curve 2 corresponds to compen-
sation for the mean phase and the total tilt within every 
segment. In the latter case, the efficiency of the seg-
mented corrector differs hardly at all from that of the 
modal corrector, which corrects all the aberrations up to 
spherical, inclusive (curve 5 in Fig. 2). 
 

 
 

FIG. 2. 
 

Finally, it may be noted that am efficient program 
which makes it possible to calculate and visualize (on an 
interactive display) the dynamics of the planar con-
vective flow which appears during the propagation of an 
intense beam in a horizontally positioned cell with 
rectangular cross section has been created. The opera-
tional efficiency of the modal and segmented correctors 
for correcting the phase distortions produced as the 
beam propagates through the radiation-induced de-
focusing, astigmatism, and coma, and 5) from tilt- to 
spherical aberration, inclusive, is plotted in Fig. 2. It 
can be seen that the tilt comprises up to 40% of the 
distortions, and the coma comprises about 20%. In this 
figure, in contrast to Fig. 1, relaxation can be seen, 
since a longer time interval is plotted, thermal in 

homogeneities has been investigated. In contrast to 
Ref. 6, in which the mode structure of such distortions 
was also studied, we have found that the phase dis-
tortion spectrum shifts toward higher aberrations as 
the radiation power increases. 
 

 
 

FIG. 3. 
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