
1194  Atmos. Oceanic Opt.  /December  1990/  Vol. 3,  No. 12 P.A. Konyaev et al. 
 

0235-6880/90/12  1194-4  $02.00  © 1990 Institute of Atmospheric Optics 
 

AN INVESTIGATION OF INTENSITY FLUCTUATIONS  
OF REFLECTED RADIATION IN THE TURBULENT ATMOSPHERE  

BY THE MONTE CARLO METHOD 
 
 

P.A. Konyaev, V.P. Lukin, G.Ya. Patrushev, and S.Yu. Tabakaev 
 
 

Institute of Atmospheric Optics, 
Siberian Branch of the Academy of Sciences of the USSR, Tomsk 

Received October 3, 1990 
 
 

The results of numerical calculations of the propagation of reflected wave beams in 
the turbulent atmosphere cue presented. The statistical characteristics of waves scattered 
by specular and corner-cube reflectors are analyzed. 

 
 

Adaptive correction of turbulent distortions of 
optical beams is performed, as a rule, using reference 
waves1 which are obtained by scattering from special 
reflectors (beacons). Therefore, the need has arisen to 
study the statistical properties of signals in optical 
detection and ranging.1,2 When the size of reflector is 
small, a nearly spherical reference wave is formed 
about the reflector with respect to the receiver. The 
properties of this wave have been studied quite well. 
In the case of a reflector of finite size, which cannot be 
considered as either a point or an infinite reflector, the 
situation is different. Significant difficulties arise 
when one attempts to calculate the statistical char-
acteristics of waves scattered by reflectors of finite size 
(even specular reflectors). Replacing a real reflector 
with sharp edges by a reflector with smooth edges for 
which the reflectance follows a Gaussian law results in 
a dramatic difference between the calculated and 
measured characteristics;3 however, it is often used in 
theoretical studies. To overcome these difficulties we 
propose to study the statistical characteristics of op-
tical waves scattered by reflectors of substantially 
reduced size (reference beacons) by the Monte Carlo 
method, in which the forward and backward wave 
propagation is simulated by having the wave pass 
through a set of corresponding phase screens (to take 
diffraction into account).4 If a supercomputer is 
available this approach is universal. It allows one not 
only to correctly take into account optical wave dif-
fraction by a real reflector, but also to investigate the 
range of values of the turbulent parameters which are 
difficult for analytical calculations.6 

We will describe the wave propagation to the 
reflector along the z axis with the help of the scalar 
parabolic approximation: 
 

 (1) 
 
where U(z, ) is the complex amplitude of the wave. 
Its value on the boundary z = 0 is 
 

 
 

where x and ó are the Cartesian coordinates in the 
plane perpendicular to the z axis, a0 is the effective 
radius, F is the radius of curvature of the phase front 
at the center of the emitting aperture, 2 = x2 + ó2, 
k = 2/ is the wave number, and n1 are the relative 
fluctuations of the refractive index. We will take into 
account diffraction by the reflector by substituting the 
boundary condition at z = L (at the end of the 
propagation path) 
 

 (2) 
 
in the parabolic equation for the reflected wave 
 

 (3) 
 

The reflectance V() in the boundary condition 
(2) is a parameter of the reflector. So, for a real 
specular disk with diameter d and a corner-cube re-
flector with metallized reflecting surfaces the 
boundary conditions will be 

V(, ) = A()( – ), A() = 1,   d, 
in the case of the mirror, and 

V(, ) = A()( + ), A() = 1,   d, 
in the case of the corner-cube reflector. 

In the numerical solution of the equation of wave 
propagation along a path with reflection the turbulent 
perturbations are simulated by the same phase screens 
for both the forward and the backward transmission of 
the' wave. The level of turbulence is modeled by the 
number of phase screens positioned along the path and 
the turbulent intensity of each individual phase screen. 
The perturbing effects of the simulated and natural 
media are considered to be equivalent if their mutual 
coherence functions along the forward propagation 
path are equal. As is well known, the mutual coherence 
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function c of the Gaussian beam and the coherence 
radius of the plane wave 0 are related by the expression 
 

 (4) 
 

The relation between the parameter 
2 2 7/6 11/6
0 1.21 nC k L   and the coherence radius 0 is 

easily determined by solving Eq. (4): 
0 = (q/1.22)5/12, 2 2

0 0/ .q z a   Here 2
nC  is the 

structure characteristic of the refractive index, which 
characterizes the turbulent propagation conditions in the 
continuous medium. The coherence radius for the for-
ward propagation is calculated to the second significant 
digit beyond the decimal point. A collimated beam 
(F = 0) with Fresnel number 2

0 / 4r ka L   = 0.1 

and reflectors with the dimensions of one (r = 1.7) 
and two (r = 6.8) Fresnel zones were used in the 
trial calculations in the simulation. 
 

 
 

FIG. 1. Backscattering intensification coefficient 
on the beam axis N(0) as a function of the turbulent 
intensity on the propagation path 0(L). For a 
specular disk (curves 1, 2, 3) and for a cor-
ner-cube reflector (curves 1, 2, 3): 1, 1 
—r = 1.7; 2, 2 —r = 6.8; and 3 — r = 0. 

 
Figure 1 plots the intensification coefficient of 

the intensity fluctuations on the reflected beam axis 
N(0) as a function of the propagation conditions along 
the path 0. This intensification coefficient is defined 
by the formula 
 

 
 

where 0( , )R
uncI x R  is the average intensity over the 

path length 2L (direct and reflected waves uncorre-
lated), and is a measure of the amplification of the 
intensity fluctuations due to turbulence along the 
propagation path. In addition, the propagating beam is 
limited by the diaphragm located at the distance L 
from the transmitter. It follows from the results given 
in Fig. 1 and comparison with the data given in Ref. 2 
(for 0 = 0.4) that qualitative agreement holds in the 
case of weak turbulence; however, the quantitative 
discrepancies are large. An increase of the turbulent 

intensity results in an insignificant change in the 
backscattering intensification coefficient on the re-
flected beam axis N(0) in the case of a specular disk, 
but in the case of a corner-cube reflector it leads to a 
monotonic increase of this coefficient by as much as a 
factor of two. 
 

 
 
FIG. 2. The spatial distribution of the intensi-
fication effect N() in the image plane for the 
specular disk: 1) r = 6.8, 2) r = 1.7, 0  0.7. 

 
The dependence of the backscattering intensifi-

cation coefficient N(R) on the distance R from the 
center of the beam axis in the image plane is shown in 
Fig. 2. It can be seen from the figure that in the case 
of a collimated beam the intensification effect is lo-
calized in the immediate vicinity of the beam axis R d 
a0, whereas outside of this region attenuation is ob-
served, i.e., the redistribution of the intensity due to 
the double passage of the reflected radiation through 
the same inhomogeneities of the propagation medium. 
 

 
 

FIG. 3. The rms values of the intensity fluctua-
tions as a function of the level of turbulence for the 
specular disk (2, 4 —r = 1.7; r = 6.8) and for 
the corner-cube reflector (1, 3). 

 
Figure 3 presents the rms values of the intensity 

fluctuations on the beam axis (0) as functions of the 
level of turbulence 0 on the propagation path. As can 
be seen, in these two cases the fluctuations of the 
radiation reflected from a corner-cube reflector are less 
than from a specular, disk of the same diameter both 
for weak and strong turbulence. The dynamics of 
variation of the level of the intensity fluctuations of a 
narrow beam with close to diffraction-limited pa-
rameters reflected from the specular disk was studied 
in Ref. 5 as a function of 0 by the Huygens-Kirchhof 
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method generalized for the case of a smoothly in-
homogeneous turbulent atmosphere. It was assumed 
there that the reflectance of the specular disk V() as 
a function of distance to the center of the disk  
followed a Gaussian distribution. Comparison of 
these results shows that the Huygens-Kirchhof 
method leads to air underestimate of the intensity 
fluctuations for 0.18  0  1.0. 
 

 

 
 

FIG. 4. The spatial distribution of the variance of 
the intensity fluctuations 2()/2(0) (a) for the 
specular disk and (b) for the corner-cube reflector 
for different levels of the turbulent intensity: 
1) 0 = 0.18, 2) 0 = 0.7, and 3) 0 = 1.07, 
r = 1.7. 

 

Figure 4 shows the dependence of the variance 
of the intensity fluctuations in the image plane on 
the distance from the beam axis for different levels of 
turbulence for a plane mirror (Fig. 4a) and a cor-
nel—cube reflector with dimensions equal to one 
Fresnel zone (Fig. 4b). It can be seen from the 
figures that the variance of the fluctuations varies 
nonmonotonically due to the effect of diffraction on 
the reflector. The diffraction pattern becomes more 
and more smeared cut as the turbulent intensity 0 
increases, and for 0 = 1 the increase of the variance 
with distance from the beam axis became smoother. 
The same behavior of the variance of the fluctuations 
takes place when the size of reflectors is equal to two 
Fresnel zones. 

The results presented are a good example of the 
possibilities of the. proposed method for studying the 
specific characteristics of reflected waves in different 
adaptive and ranging systems under conditions 
which are as close as possible to the real ones, while 
other methods of calculation do not give reliable 
quantitative data. 
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