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A method is developed for calculating the parameters of the scattering of 
light by a two-layer sphere with homogeneous core and radially 
inhomogeneous shell whose complex refractive index depends on the parameter 
ρ as m = Aρ

b , where ρ = 2nr/λ (r is the radial distance from the center of the 
particle, λ is the wavelength) and A and b are the arbitrary complex 
constants. The method is based on combining the Gegenbauer summation 
theorem and the expansion of the Bessel functions and their logarithmic 
derivatives in continued fraction. 

 
Treating theoretically the problem of the scattering of 

light by the dispersions, one often can be faced with a 
necessity of taking into account of the optical 
inhomogeneity of particles. In this case it became common 
practice to use the model of a multilayer sphere with radial 
nonuniformity of the refractive index. This model often 
appears to be inadequate to the real optical properties of the 
particles. This fact makes one to introduce more 
sophisticated models. A model of a two–layer sphere with 
homogeneous core and radially inhomogeneous shell was 
employed in the 1960's–1970's to describe the scattering 
properties of a number of objects being outside the field of 
atmospheric optics (Refs. 1 and 2). 

In recent years there has been an increase in interest to 
this model associated with the problems of the scattering of 
light by partially solvable particles of an atmospheric 
aerosol, by evaporating particles surrounded with a vapor–
gas halo, and by some artificial aerosols. The sphere with 
inhomogeneous shell was employed for describing the fine 
fraction of the ocean suspension3,4 and for modeling the 
scattering of light on an ensemble of particles with random 
shape.5,6 Its application to fractal clasters is the matter of 
particular interest.7 Widespread adoption of this model into 
the calculations of the scattering of light is impeded by 
mathematical difficulties (not only of analytic but also of 
computational character). 

The purpose of this paper is to construct a stable and 
reliable algorithm for calculating the characteristics of the 
scattering of light by the above-indicated variety of two—
layer particles with the radial inhomogeneity of rather general 
form. 

Let us refine the formulation of this problem. A plane 
monochromatic (with wavelength λ) electromagnetic wave is 
incident on the particle having a spherical core of a radius r 

with constant complex refractive index m1 = n
∧
 – iκ1 and 

concentric shell with the external radius r2 with the 

refractive index m2(ρ) = n
∧
2 (ρ) – iκ2(ρ), whose the value is 

a function of relative distance ρ = 2πr/λ to the center of the 
sphere. The rigorous theory of the scattering of light on such 
an object was developed in Ref. 8. The details of this rather 
complicated and cumbersone derivation need not be discussed 
and we shall give only the final relations for the scattering 
characteristics. In contrast to Ref. 8, the expressions for the  

amplitude coefficients of the scattered field can be written 
in the following form suitable for numerical calculations  
(l = 1, 2, ...): 
 

 
 

and

 

 (1) 

 

where  
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(the expressions for γ(3) are derived from the 
corresponding expression for γ(1) by substituting F(3) and 
R

(3) for F(1) and R(1)), 
 

 
 

 
 

and  (3) 
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The following notation is accepted in Eqs. (2) and (3):  
ρ1,2 = 2πr1,2/λ are the diffraction parameters for the core 
and for the shell, respectively; ψ1(ρ) and ξ1(ρ) are the 
Riccati–Bessel and the Riccati–Hankel functions; D1(ρ) 
and G1(ρ) are the logarithmic derivatives of the functions 
ψ1(ρ) and ξ1(ρ), respectively; W1(ρ) and V1(ρ) are the 
magnetic and electric radial distribution functions (the 
definition is given below); R1(ρ) and F1(ρ) are the 
logarithmic derivatives of the functions W1(ρ) and V1(ρ), 
respectively: the superscript (1) denotes the functions which 
are regular at the origin of the coordinates and tne 
superscript (3) denotes the functions which satisfy the 
condition of radiation in the far zone of diffraction. The 
scattering characteristics can be calculated from the 
standard formula9 given that the coefficients α1 and β1 for 
the amplitudes are known.  

Radial distribution functions Wl
(i)(ρ) and Vl

(i)(ρ) 
(i = 1, 3) are the solutions of linear differential equations of 
the second order 
 

2 2 2
1 1 12 2
( ) ln ( ) ( ) ( ) ( 1) / ( ) 0,W m W m l l W

′

′′ ′⎡ ⎤ ⎡ ⎤ρ − ρ ρ + ρ − + ρ ρ =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 (4) 

 

2 2
1 l2
( ) ( ) ( 1) / ( ) 0,V m l l V

′′ ⎡ ⎤ρ − ρ − + ρ ρ =⎢ ⎥⎣ ⎦
 (5) 

 

where the prime denotes the derivative with respect to ρ. A 
concrete form of these equations and, hence, their solution 
are functions of the selected profile of the refractive index 
m2(ρ) of the shell. As shown in Ref. 2 the analytical 
solutions of the radial distribution equations (4)–(5) are 
possible only for a very limited set of profiles m2(ρ). In this 
case, as a rule, the solutions are obtained in terms of 
hypergeometric functions which are extremely inconvenient 
for the numerical calculation. The only real profile which 
prevents from appearance of hypergeometric functions is 
power–law function 
 

m2(ρ) = b1ρ
b2, (6) 

 

where b1 and b2 are the arbitrary complex constants. The 
particular case of profile (6) for real b1 and b2 was studied 
in Refs. 8 and 10 while a simpler case for b2 = –1 was 
considered in Refs. 3–5 and 11. Four free parameters enter 
in profile (6), which makes it possible to specify 
independently the complex refractive indices for the 
interface between a core and a shell m2(ρ1) and for the 
external interface of the particle m2(ρ2). In this case the 
profile m2(ρ) for a shell turns out to be fixed. 

Substituting Eq. (6) into radial distribution equations 
(4) and (5) we derive the differential equations, whose 
solutions are cylindrical functions 
 

 
 

 (7) 

 

 
 

and  
 

 (8) 

where J is the Bessel function and H(2) is the Hankel 
function of the second kind (below the superscript (2) is 
omitted). The argument x and the subscripts of these 
functions are equal to 
 

2
22

2 2 2

( 1) ( 0.5)( ) 2 1
( ) , ,

l 2( 1) 1
l l

l l bm l
x and

b b b

+ + +ρ +
ρ = ρ   μ =     ν =

+ + +
 (9) 

 

It is obvious that functions Vl and Wl to within an 
unimportant constant factor transform into the Riccati–Bessel 
and the Riccati–Hankel functions given that a shell is 
homogeneous (b2 =0). If a shell is inhomogeneous, the 
subscripts μl and νl are complex in the general case. As 
Eqs. (1)–(3) show, cylindrical functions (7) and (8) enter into 
the amplitude coefficients in the form of the following ratios: 
 

(10) 

 

and 
 

 (11) 

 

where the prime refers to the derivative with respect to the 
argument x(ρ), Rl

(3) and Fl
(3) are derived from Eqs. (10) and 

(11) by substituting the Hankel function for the Bessel 
function, 
 

(12) 

 

(the expression for E1 is analogous to Eq. (12) in which μl 
is substituted for νl). In the particular case in which b2 = –
1 (Refs. 3, 5, and 11) radial distribution functions 
degenerate into the power—law functions and 
 

 
 

 
 

Thus, to calculate the amplitude coefficients, it is 
necessary to obtain three groups of functions: 1) functions 
ψl(ρ2), ξl(ρ2) and logarithmic derivatives Dl(ρ2), Gl(ρ2), and 

Dl(ml, ρl); 2) logarithmic derivatives Iν
l

′  (z)/Iν
l

(z),  

Hν
l

′  (z)/Hν
l

(z) and ratios Iν
l

(z)/Hν
l

(z) for the arguments z 

= x(ρl) and z = x(ρ2); 3) analogous functions for different 
subscripts μl. Numerical calculation of the functions of the 
first group is not difficult. To estimate the number of terms 
L sufficient for the convergence of the series in the 
amplitude coefficients, we can use the relation12 
 

 (13) 

 

primarily derived for the homogeneous spheres. The set of 
the logarithmic derivatives Dl(ρ2) and Dl(ml, ρl) (l = L, 
L – 1, …, 1) is evaluated by following a procedure of 
backward recurrence, starting terms of recursion have been 
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derived from the expansion in a continued fraction.13 
Functions ξl(ρ2) and Gl(ρ2) were calculated by forward 
recursion (l = 1, 2, ..., L) and functions ψl(ρ2) were 
estimated by following a procedure of backward recurrence 
with recalculation. A more detailed description of the 
technique for calculating these functions is given 
elsewhere.12-14 

As to the functions of the second and third groups, the 
estimation of them is more complicated. One can see from 
Eq. (9) that it is impossible here to construct the recurrence 
procedure for l. This fact forces us to perform an 
independent calculation for every l = 1, 2, .... L. The 
situation is not simplified even taking into account that we 
need the ratios of the functions, rather than the functions 
themselves. In the case of complex subscripts it is 
impossible to obtain these ratios without performing a direct 
computer calculation of at least one cylindrical function. 
For this purpose the regular function Iν(z) is required (to 
simplify notation, we subsequently consider the arbitrary 
argument z and the subscript ν). To calculate this function, 
we somewhat modified the technique proposed in Ref. 15, 
which is the generalization of the method described in 
Ref. 16, to the complex values of v. We shall introduce the 

sequence of auxiliary functions Fn(z) (n = 0, 1, …, N
l

∗ ; the 

definition of N
l

∗  is given below) which are related to the 

functions Iν+n(z) by the normalization constant A : 
AIν+n(z) = Fn(z) and it then follows that these functions 
follow the same recursion for n as the Bessel function does: 
 

Fn-1(z) = 
2(ν+n)

z  Fn(z) – Fn+1(z). (14) 

 

As is well known the recursion (14) is stable only in 
calculating the backward recursion. In this case we should 

start the recursion from the subscript N
l

∗  which is 

noticeably greater than not only ⎪ν⎪ but also ⎪z⎪. We used 

the following estimate for N
l

∗ : 
 

 (15) 

 

rounded off to the nearest odd number. The initial values 

are F
N

l–1

∗   = 0 and F
N

l

∗   = 10
–35

(I + i). If the condition (15) 

is satisfied, the sequence Fn(z) converges within 5 to 6 steps 
of recursion. For this reason the values of Fn with n = 0, 1, 

… , 2Nl, where 2Nl = N
l

∗ – 5, are assumed to be correct. 

The Gegenbauer summation theorem17 

 

 (16) 

 

where Γ is the gamma–function, leads to the relation for 
the normalization constant A (the details are given in 
Ref. 16) 
 

 (17) 

 

where the coefficients αk are calculated by multiplicative 
recursion αk = ñkαk–1, in addition α0 = (2/z)ν Ã (1 + ν) and  

ñk = (ν + 2k)(ν + k – 1)/(ν + 2k – 2). The summation in 
Eq. (17) is performed either up to k = Nl or is stopped if 
the ratio of the subsequent term to the sum of the preceding 
terms in a series is smaller than 10–8. The goal function 
Iν(z) is equal to 
 

 (18) 

 

In realizing this method, some difficulties have arisen. 
The series (17) converges rather slowly, especially for large 
negative value of Re ν, so that for Re ν < 0 the value of l–ν(z) 
is calculated instead of Iν(z). 

The numerical calculation of the gamma–function of 
the complex argument Ã(1 + ν) gives rise to some 
difficulties. Standard subroutines are employed with single 
precision that results in either overflow or zero of the result 
and finally in a wrong value of α0. Therefore, it turned out 
natural to rewrite the equation in logarithmic form 
 

 
 

with subsequent reconstruction of α0. The logarithm of the 
gamma–function can be calculated using a standard 
subroutine. 

The nigh orders of magnitude appearing in calculating 
Fn and ñk by recursions can be avoided to a strong degree by 
scaling Fn to Re F0, and αk to α0. After normalization, basic 
relation (18) can be written in the form 
 

 (19) 

 

The most significant difficulties are connected with the 
opposite directions of recursions for F and α if the domain 
of convergence of series (17) is a priori unknown. If Nl 
terms of a series do not provide for the convergence by the 
selected criterion, we must perform an additional 

calculation of nF (n = 2Nl, 2Nl + 1, …, N
2

∗ ) using the 

backward recursion algorithm (14) with initial values 

N 12
F∗

+
 = 0 and 

N2
F∗  = 10–15(l + i), where N

2

∗  = 2Nl + 15. 

The sequence nF  and the previously obtained sequence �nF  

can be joined together at n = 2Nl. If we denote the ratio 
�

l l
2N 2N/F F  by f, it becomes obvious that the sequence 

�

l l2N 1 2N 1F f F+ += , …, �

2 2
2N 2NF f F=  (where 2N2 = N

2

∗  – 

5) is scaled analogous to the primary one. Hence, after the 
values ñk (ê = N1 + 1, …, N2) have been obtained by 
recursion we can continue the summation in the 
denominator of Eq. (19). If the convergence is not provided, 
the procedure must be repeated. 

Based on the Gegenbauer summation theorem, the 
method for calculating Iν(z) permits one to estimate 
simultaneously the value of the logarithmic derivative 
 

 (20) 

 

Moreover, this method makes it possible to calculate the 
Neuman function Yν(z). It was shown in Ref. 16 that 
 

 (21) 
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where 
 

 
 

 
 

To obtain the desirable relations (using the Wronskian and 
the relations for the derivatives), it is quite sufficient to 
know Iν, Yν and Dν. However, the calculations indicated 
that this way of calculating Yν is numerically stable only 
for | ν | . | z |. If | ν | n | z | (as a rule, this occurs when the 
series (21) is summarized), a dramatic loss of precision 
occurs. Given that the subscript and the argument are of the 
same order of magnitude, the loss of precision is small, but 
an extremely slow convergence of series (21) is observed. 
Therefore, we employed another approach. As is well 

known, the expansion of the relation Iν
′  (z)/Iν(z) in a 

continuous fraction for a half–integer ν is widely used in 
modern algorithms for calculations using the Mie theory.12,13 
This expansion is quite stable in the numerical aspect; a 
slight modification enables us to employ it to the complex 
subscripts and to the calculation of D–ν(z)(Re ν > 0). For 
Re ν < 0, this method is employed for the calculation of 
Dν(z). 

Further, we obtain from the well–known Wronskian 
 

 (22) 

 
(upper signs refer to Re ν > 0, lower signs refer to 
Re ν < 0). The expressions for the ratios sought follow from 
the definition of the Hankel functions 
 

 
 

and  

 
where 
 

 
 

The developed algorithm was implemented on a 
BESM–6 computer. The test calculations show an 
agreement with the results given in Refs. 10 and 11 for 
degenerated cases. A version of this program for 
polydispersions (lognormal and gamma distributions of 
radius r of the core and the constant ratio of external radius 
r2 to r1) was employed for studying characteristics of the 
scattering of light on clasters and different types of the 
atmospheric aerosol. 
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