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An efficient algorithm which allows one to decrease substantially the 
length of ñîòðètations and to improve the accuracy of the phase front 
reconstruction is constructed based on the method of piece-wise linear 
approximation. Analytic expressions are derived for estimating the length of 
ñîòðètations and error variance of the phase front reconstruetion as a function 
of the measurement error variance. Advantages of the proposed method are 
demonstrated. 

 
At the present time phase–conjugation systems are 

being wideló used for solving problems of compensation for 
nonstationary distortions of optical radiation propagating in 
the turbulent atnosphere.1–2 One of the main questions 
pertaining to fabrication of such systems is the numerical 
calculation of the optimal controlling force vector for a 
flexible adaptive mirror in the real time and with a given 
accuracy. In so doing, the vector of the optimal controlling 
signals is calculated by minimization of the functional 
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where where σ2 is the square of phase perturbations 
averaged over the input aperture, U is the controlling force 
vector, F is the vector of response functions of the phase 
front corrector, ψ Is the function describing phase 
perturbation, ρ = 2r/D, r is the radius vector of points on 
the input aperture, and D is the aperture diameter of the 
form3 
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ρ∫ Ï is the square matrix. 

Measurements with a sensor of the Hartmann type are 
generally used for determinating the phase front parameters 
ψ with an account of peculiarities of the optical radiation. 
Measurements of local tilts of the phase front at the 
aperture points of the form1,2 
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are performed with this sensor, where k is the radiation 
wave number. 

Up to now the modifications of the Hartmann sensor 
are many in number.3 However, irrespective of physical 
principles used for measuring 1 ocal tilts of the phase front, 
reconstruction of the real phase front and numerical 
calculation of the optimal vector of controlling signals is 
performed in accordance with Eq. (2) based on the  

measurements of the form (3). Practical implementation of 
the algorithm (2) would entail lengthy computations 
thereby limiting the application of these algorithms in real 
time. 

The authors of Refs. 3 and 4 proposed their version of 
the phase conjugation algorithm, which does not require any 
preliminary reconstruction of the phase front in explicit 
form. In this case the optimal phase surface is found as: 
 
Uopt = PG–1 (4) 
 
where 
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is the row matrix and 
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Pgrad grad dG F= ρ∫  

 

is the square matrix. However, the practical implementation 
of such an algorithm for a wide class of response functions 
of flexible adaptive mirrors is extremely problematic since 
the matrix G may be nonexistent in some cases on account 
of the linear dependence of rows or columns. It should be 
also noted that the real response functions F1 of flexible 
adaptive mirrors may deviate from theoretical or 
experimental functions that can also result in ill–
conditionality of the matrix G. 

This paper is concerned with the method of the phase 
front reconstruction with the help of the piece–wise linear 
approximation. 

Let the square aperture be segmented of M × N 
identical subapertures and the local phase front tilts (3) be 
measured at the centers of these subapertures. Now we shall 

consider the jth (j = 1,M ) wavefront cross section through 

the coordinate y (Fig. 1). 
In the general case the wavefront cross sect ion is a 

random function of the coordinate x1 (I = 1,M ). Let us 

divide the wavefront cross section into M segments. On 
every segment the wavefront is approximated by a straight 
line segment 
 
z1 = a1 + U1 x,  (5) 
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where a1 is the where a is the phase shift on the ith segment 
and z1 is the piece–wise linear approximation of the phase 
front. The subscripts j are omitted in Eq. (5) and hereafter. 
 

 
 

FIG. 1. The jth cross section of phase front. 
 

To evaluate a1, we will employ the procedure of 
joining the adjacent segments 
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where x1 is the coordinate x at the point i. In accordance 
with Eq. (6), a system of (M – 1) linear equations can be 
written as 
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One more equation to complete the system (7) will be derived 
from the zero average phase relation on the entire aperture 
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Taking x1 = iΔx and Δx = 
L
M  into account, where L is the 

sensor aperture dimension, Eq. (9) can be written in the form 
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Introducing the notation 
 

b1 = (Ui + 1 – Ui) iΔx 
 

and 
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we can write a system of linear equations 
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By solving the system (12) we will obtain the values of the 
phase shifts 
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Thus taking into account Eq. (11) the method of 

reconstruction of real phase front from the measurements of 
its local tilts is reduced to the following algorithm: 
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Applying procedure (14) to all the subaperture matrix 

rows for Uij and to all the subaperture  matrix columns  for 
Vij, the value of the phase shift on the ijth subaperture   
can be written as 
 

aij = (a
x
ij  + a

y
ij ) /2, (15) 

 

where a
x
ij  is the piece–wise linear approximation for the 

subaperture matrix rows and a
y
ij  is the piece–wise linear 

approximation for the subaperture matrix columns. In so 
doing, the phase front on the entire aperture is reconstructed 
in the form 
 

.ij ij ij ija U x V yψ = + +  (16) 

 
In this case the vector of optimal controlling signals for the 
adaptive optical system is sought according to Eq. (2). 

Now we will consider the errors in the phase front 
reconstruction based on the proposed method. We will proceed 
from the assumption that errors in measuring the phase front 
tilts on adjacent subapertures are uncorrelated. Taking into 
account the superposition principle and by virtue of the 
linearity of the proposed reconstruction method instead of 
 

Un
ij = Uij + nx
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we can examine the case with 
 

Un
ij = nx

ij  and Un
ij = ny
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at the input of the device by which the algorithm (14) is 
implemented. Here nij is the statistically independent 
measurement noise. 

Such an approach to the analysis of the errors in the 
phase front reconstruction will essentially simplify further 
calculations and makes it possible to derive analytic 
expressions for the intercomparison of the proposed method 
with other known methods. The error variance of the phase 
front reconstruction will be written in the following form: 
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Taking   into  account the statistical independence of 
noise in different channels and with due regard to Eq. (14), 
Eq. (19) can be represented as 
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where σ

2

r
  is the error variance of the phase front 

reconstruction and σ2 is the variance of noise in measuring 
the local phase front tilts. The subscript i adjacent to the 

coefficient ki means that σ
2

ri
  depends on the subaperture 

position. For i = 1, taking into account Eq. (19), we have 
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A similar expression can be derived for a subaperture 
positioned in the middle of the row 
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FIG. 2. Dependence of the coefficient ki on the number of 
subapertures of the sensor of the Hartmann type: 1) piece-
wise linear approximation, 2) well-known algorithm of 
Ref. 5. 
 
Shown for comparison in Fig. 2 are computer calculations of 
the average coefficient êav together with the dependence of  

the identical coefficient on the number of  subapertures  M 
obtained with the use of the well-known algorithm for the 
phase front reconstruction.5 

The time consumption for the synthesized algorithmic 
implementation can be determined from the formula 
 
Q = 10 M3 + 2 M2.  (23) 
 
It should be noted that the implementation of the well-
known algorithm of the phase front reconstruction5 will 
require at least 2/3 (M + 1)6 operations. 

The method was realized on an EC–type computer in 
terms of PL/1. 

Conclusions. The method of phase front reconstruction 
proposed in this paper makes it possible to decrease the 
length of computations and to increase the accuracy of 
reconstruction from measurements performed with the 
sensor of the Hartmann type. This method is versatile and 
can be realized not only with the help of the analog devices6 
but also with the help of current high-performance parallel 
computer systems. The representation of the phase front on 
every subaperture in the form (16) makes it possible to use 
the wavefront sensor6 in an adaptive optical system with a 
segmented mirror, when control is fulfilled on the basis of 
the wavefront tilts and position. In this case the error in 
approximation of the phase front decreases by a factor of 2 
in comparison with a segmented mirror.4 Special emphasis 
should be laid on the fact that, in the process of 
reconstruction by the proposed method there is no need in 
the inversion of matrices of G–type. In addition the 
solution of the reconstruction problem always exists for a 
wide class of response functions of flexible adaptive mirrors. 
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