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An analysis is presented of some specific features of short optical pulses 

propagating along the slant paths in a resonantly absorbing medium. Results are 
obtained for the model of an inhomogeneous, vertically stratified medium in the 
geometrical optics approximation. It has been shown that the inertia of response of the 
resonant medium has an appreciable effect on the propagation process so that both the 
pulse shape and the energy parameters of the beam depend on the direction of 
propagation.  

 
INTRODUCTION 

 
Some specific features of deformation and attenuation 

of short optical pulses with various shape when such pulses 
propagate in a resonantly absorbing gaseous atmosphere 
along slant paths are discused. 

The atmosphere is modeled as inhomogeneous 
vertically stratified medium, the parameters of which are 
varied according to standard statistical models of the 
atmosphere. The thickness of the atmospheric layer is about 
10 km. As the resonantly absorbing component of the 
medium, we consider water vapor. The variations in shape, 
width, central frequency of the absorptions line, and water 
vapor concentration as functions of altitude are taken info 
account in calculations. In addition, the resonant part of the 
refractive index of the medium undergoes similar variations 
caused by a resonantly absorbing gas. The nonresonant 
component of the refractive index is calculated according 
the formula 
 

n
0
(h) = 1 + 58.2⋅10-6(1 + 7.52⋅10-3⋅λ-2)p(h)/T(h), (1) 

 
where λ is the radiation wavelength in microns, p(h) is the 
air pressure in torr, and T(h) is the temperature in degrees 
Kelvin. 

The analysis of the transformation of the pulse 
parameters during the propagation of the beams is based on 
the Maxwell⎯Bloch equations for quasiplane wave in the 
approximation assuming both geometric optics and small 
area of the pulse. In this case propagating through the ith 
layer of the inhomogeneous stratified medium is described 
by the system of equations  
 

 ⎣
⎡

⎦
⎤cosθi 

∂

∂h + 
n0i

c  ⎝
⎛

⎠
⎞1 – 

h
ω
 
∂Ki

∂t  
∂

∂t εc = 2πik × 

 

× ⌡⌠
–∞

∞

Pc(Δ′)g(Δ – Δ′)dΔ′, (2.1) 

 
ψi = ψi–1
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and 
 

μ(h)
∂Pc

∂t  = –γPk + iεc. (2.4)  

 
Here the rediation field is represented in the form 

E = Re[εce
iψ], where εc = ε0e

iϕ is the complex, slowly 

varying amplitude, ψ is the rapidly varying phase of the 
optical wave, θi is the angle of the direction of propagation 

of the wave through the ith layer with the normal to its 
boundary, h is the coordinate along the normal, nri is the 

resonant part of the refractive index of the layer, which is 
proportional to the ratio of the imaginary part of the right 
side of Eq. (2.1.) and the optical field intensity εc, 

 

γ = 1 – i⋅(Δ – Ki

⋅

⋅h)⋅T
2
(h), Ki = n0ik/cosθi , 

 
μ = T

2
(h)/τp, τp is the pulse duration, T

2
 is the phase 

memory time of the medium, k = ω/c, and Δ is the 
detuning of the incident radiation from resonance. 

The system of equations (2) must be completed by the 
corresponding initial conditions and the conditions 
prescribed on the layer boundaries. It should be noted that 
relations (2.2) and (2.3), which reflect the essence of the 
model, follow from these boundary conditions. 
 

SOME SPECIFIC FEATURES OF RESONANT 

REFRACTION DURING THE PROPAGATION OF 

SHORT OPTICAL PULSES  

 
By the term 'resonant refraction' we understand a 

change in the direction of beam propagation caused by the 
resonantly interacting component of the medium. 

Let us now consider the specific features of the 
refraction of the short optical pulses at the boundaries 
between the layers of the inhomogeneous, stratified, 
resonantly absorbing atmosphere. For simplicity let the 



M.V. Kabanov et al. Vol. 4,  No. 3 /March  1991/ Atmos. Oceanic Opt.  209 
 

 

pulse have a step–like shape and the absorption line be 
homogeneously broadened. It then follows from Eqs. (2.3) 
and (2.4) together with the initial conditions and the fact 
that for the atmosphere, as a rule, noi . nri that 
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where t

0
 is the time of arrival of the pulse at the 

boundary between the layers, n
ex, i is the value of the 

resonant part of the refractive index of the medium in the 
ith layer exposed to the monochromatic radiation. 

Since for the model atmosphere n
0, i–1

/n
0i – 1 n 1, 

it follows from Eq. (3) that changes of the refraction 
angle caused by the resonantly absorbing gas are 
symmetric with respect to the detuning of the incident 
radiation from resonance and change sign for the 
backward propagation. In addition, the refraction angle 
undergoes temporal variations at the start of interaction 

for t <∼ T2 as a result of the time delay of the response of 

the resonant system. 
With further propagation of the wave through the 

homogeneous layer, the refraction angle changes as a 
function of time, resulting in a time–dependent angular 
divergence of the beam. However, because of the small 
value of the resonant refraction,2 we may continue to 
consider the optical wave to be quasiplanar, and the most 
important consequence of this phenomenon is phase 
modulation of the wave according to Eq. (2.2). The 
resulting pulse frequency shift can be great in this case 
since Ki⋅h . 1. 

 
RESULTS OF NUMERICAL COMPUTATIONS 

 
The analysis of system of equations (2) was performed 

numerically. The same approximation technique was used as 
in Ref. (3). 

The optical pulse was modeled as a plane coherent 
wave whose shape upon entrance into the medium has the 
form 
 

εc(0, t) = 
⎩⎪
⎨
⎪⎧

 

[sin(πt/τp)]
q
,  t∈[0, τp] ,

0,  t > τp .
 

 
Depending on the parameter q, the pulse shape varies 

from quasi–rectangular to quasi–Gaussian. 
Results of the numerical calculations of ε = Reεc with 

λ = 1.315 μm for the summer atmospheric models at mid–
latitudes at incidence angle θ = 40° are presented below. 

Figures 1 and 2 depict the deformation of the shape 
of the transmitted pulse as a function of direction of 
propagation and the parameters q and Δ. It can be seen 
that the deformation is determined mainly by the 
direction of propagation: noticeable stochasticity of the 
pulse shape occurs for downward propagation and 
disappears for upward propagation. Figures 1 and 2 also 
show that the energy of the transmitted pulse is a 
function of the direction of propagation (see also Table 
I). The above indicated dependence is due to the 
deviation of the carrier frequency under conditions of 
resonant refraction. In addition, in one case the pulse  

frequency shifts mainly toward the line center, and in the 
other for the reverse direction of propagation it shifts 
toward the wing of the absorption line. 

 

 
 
FIG. 1. Dependence of the optical pulse shape on the 
direction of propagation: the solid curve plots the results for 
downward propagation and the dashed curve – for the 
upward propagation for q = 1, τp = 30 cm, and Δ = 0.1 (a), 

0 (b), and –0.1 (c) cm–1. 
 

 
 
FIG. 2. Dependence of the optical pulse shape on the 
direction of propagation: the solid curve plots the results for 
downward propagation and the dashed curve – for upward 
propagation for q = 4, τp = 30 cm, and Δ = 0.1 (a), 0 (b), 

and –0.1 (c) cm–1. 
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TABLE I. The transmitted optical pulse energy scaled to 
its initial value during propagation of the beam through 
the resonantly absorbing atmosphere. 
 

Δ, cm–1 τp, cm 

qDirection 
of  

propagation 
0.1 –0.1 0 

  

 
Upward 

0.0796 
0.0609 
0.5949 
0.0191 

0.0760 
0.0561 
0.5966 
0.0148 

0.0317 
0.0094 
0.5935 

3.62⋅10–5
 

30 
30 
3 

100 

4
1
1
1 

 
Downward 

0.0164 
0.0083 
0.5856 
0.0139 

0.0411 
0.0284 
0.5911 
0.0098 

0.0227 
0.0130 
0.5863 

4.15⋅10–5
 

30 
30 
3 

100 

4
1
1
1 

 
It should be noted that the representation of Eq. (2) in 

the form of a Fourier integral makes it impossible to take 
into account the fact that the frequency shift due to 
resonant refraction and in this case the pulse energy is 
independent of the direction of propagation.4 

The asymmetric character of the changes of sign of the 
detuning as well as a dependence of the pulse parameters on 
the direction of propagation for null detuning are associated 
with the absorption lineshift in the band center due to air 
pressure. Numerical calculations performed neglecting this 
factor confirm this conclusion. 

 

 
 

FIG. 3. Deformation of pulse shape in a resonantly 
absorbing atmosphere: the solid curve shows downward 
propagation and the dashed curve – upward propagation 
for q = 1, τp = 100 cm, and Δ = 0.1 (a), 0 (b),  

and –0.1 (c) cm–1. 
 

As was mentioned in Ref. 3, nonstationary pulse 
deformations in beams under conditions of resonant 
absorption along horizontal paths are significant for μ ∼ 1. 
Figures 3 and 4 and Table I show the same conclusion is 
valid for slant paths, in which the resonant refraction is 
added to the resonant absorption. In addition, if the 
duration of the pulse decreases to such an extent that 
μ . 1, the dependence of the shape and energy parameters 
of the pulse on the detuning and, therefore, on the lineshift 
in the band center due to air pressure disappear (see also 
Ref. 4). 

 

 
 

FIG. 4. Deformation of pulse shape in a resonantly 
absorbing atmosphere: the solid curve shows downward 
propagation and the dashed curve ⎯ upward propagation 
for q = 1 τp = 3 cm, and Δ = 0.1 (a), 0 (b), and  

–0.1 (c) cm–1. 
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