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An original method for the solution of the inverse problem of laser sensing of the 
upper ocean layer which has a multilayered light scattering structure is considered. It 
is suggested that a parametric model of the lidar return be used instead of a discrete 
representation. A modified version of the Gauss–Newton method is proposed for the 
estimation of the model parameters which describe the depth of occurrence and 
reflectivity of the underwater layers. The advantages of this modification are high 
stability and small errors of the solution. 

 
When dealing with problems of laser sensing of 

atmospheric formations one is often faced with a wide range 
of variation of the optical parameters. A number of 
approaches to the inversion of the lidar equation have been 
developed to solve this problem. Things are quite different 
for laser sensing of the ocean, especially from airborne 
platforms. A formulation of the lidar equation suitable for 
practical application is impeded by the high optical 
thickness of ocean water and the greater number of light 
scattering parameters compared to case of the atmosphere. 
Attempts made so far have addressed specific cases (e.g., 
Ref. 1). At the same time, the range of variation of the 
optical properties of water in the open ocean is smaller than 
the range of variation of the parameters of the atmosphere. 
Therefore, in many cases of scientific interest advantageous 
use is made of a simple model of the lidar return.2 From a 
physical point of view, this model includes three 
components: the reflection from the air⎯water boundary; 
rapidly decaying signals scattered by marine hydrosols and 
water molecules within a nearly uniform water depth; 
pulses with a moderately high rate of rise due to scattering 
by underwater anomalies. This model can describe a layer of 
enhanced particle number density at the depth of the 
temperature discontinuity, a "cloud" of phytoplankton, a 
scool of fish, and, finally, the sea bottom. The depth of 
occurrence of such an anomaly detected by a lidar can vary 
from a few meters up to several tens of meters. These 
factors simplify the modeling of the signal and facilitate 
further computation using the parameters of the model 
rather than the signal itself. 

Two more problems arise in the sensing of the ocean 
which complicate the matter. The depth of penetration of a 
laser pulse is generally rather small and, given the currently 
available hardware for signal recording and processing, we 
have but only a small number of counts. Moreover, the data 
often fall out due to physical reasons. There are micropatches 
on the rough ocean surface, which result in glint reflections 
onto the receiving telescope. As a consequence, the 
photodetector is overloaded or the ADC operates outside its 
input dynamic range, which leads to fallouts of valid data. 

The procedure for constructing a lidar return 
(identification) model in hydrooptical sensing of the upper 
layer of the ocean proposed in Ref. 2 is based on a model of 
the form 
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Here the origin of the coordinate system is at the air⎯water 
interface and the time t is counted from this boundary down 
to the water depth, α

1
 and α
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 are the amplitudes of the first 

and second pulses, α
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centers, and α
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pulses. Of special interest are the parameters α
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, and α
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which characterize anomalies (the hydrosol layer whith 
enhanced water turbidity, the ocean bottom, the school of 
fish, etc.). The parameters α = (α

1
, α

2
,..., α

6
) are 

determined by the Gauss⎯Newton method,2 using 
individual realizations St, k, where k is the number of the 

lidar return. 
For small samplings and data fallouts caused by the 

above mentioned physical and technical reasons, the 
Gauss⎯Newton method frequently results in unstable 
estimates of the parameters and gross errors. Well known 
methods, that provide stable statistical inferences and 
parameter estimates, in particular, directly or indirectly 
take account of supplemental data on the parameters α 
(Ref. 3). Two approaches are relevant here: deterministic 
and probabilistic statistical. The former assumes that the 
supplemental data are known a priori in terms of certain 
estimates β* of the parameters of model (1), which have 
been derived from the results of processing of individual 
realizations of echo signals similar to the signal being 
studied. It should be noted that the form of the dependence 
β* on the parameter vector α is assigned a priori. As rule, a 
linear dependence is assumed. 

The probabililistic–statistical approach assumes that 
the parameters a  are random variables whose distribution is 
well known. The normal distribution with average value β 
and covariance matrix W is often taken as the a priori 
distribution of the parameter . Under real conditions of 
airborne lidar sensing, the use of these methods would 
entail serious difficulties associated with the selection of 
analogs to the signal being processed, determination of the 
form of the dependence between β* and , and ascertainment 
of the form of the distribution of , etc. 

We suggest here a method which is free of the above 
limitations and allows one to solve the given problem as 
formulated in a fairly general way. 

To estimate the parameters of the model (1), let us 
examine the two interrelated systems 
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System (2) is a discrete model of the lidar return of 
form (1), where α is the vector of parameters α

1 
, α

2
 ,..., αm. 

System (3) is a discrete model of the supplemental data 

given in terms of the estimates  of the parameters αj, j = 1, l
⎯

, 

related to the unknown parameters α by the functions ϕj, 

j = 1, m
⎯

. The unknown functions ϕj ∈ D, j = 1, m
⎯

, where D
~
 

is the space of single–valued functions. The variables εi and 

ηjk are random quantities with zero means and finite variances. 

The estimates  in Eq. (3) can be either values of the 
parameters of lidar return model (1) obtained for certain types 
of anomalies under controlled conditions, or the values of 

these parameters for the backscattered pulse train S
~

tk, k = 1, l
⎯

, 

calculated during the course of the experiment. 
Formally, using models (2) and (3) the estimates α* of 

the parameters α at a fixed point α~ can be represented in the 
form4 
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is the functional of the total weighted mean square error in 
the assignments of the supplemented data  in Eq. (3). Here, 
K(⋅) > 0 is a weighting function which takes into account 

the uncertainty of functions ϕj, j = 1, m
⎯

 in describing the 

supplemental data (3) (in analogy with the concept of fuzzy 
sets). The parameter h indicates the degree of discrepancy 
between the supplemental data on the parameters  and the 

estimated parameters αj, j = 1, m
⎯

, k = 1, l
⎯

, i.e., the 

uncertainty in the equality  = αj . If a bell–shaped function 

centered at  is chosen as the weighting function K(⋅), the 
role of the parameter h is obvious from a physical point of 
view. The larger the value of h the greater is the 
discrepancy between  and the parameters αj, and the more 

inaccurate are the supplemental data. At h = 0, the 
supplemental data are exact. 

Problem (4) reduces to the solution of systems of 
nonlinear equations of the form 
 

∂Φ 
α 

∂αj
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⎯
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and is a rather laborious procedure from the computational 
point of view. Therefore, as in the Gauss–Newton method2 it 
is expedient to reduce nonlinear problem (5) to a set of linear 
problems by linearizing systems (2) and (3) in the vicinity of  

the point α0, which is the starting approximation for the 
parameters α. 

The recursion formula for calculating the next 
approximation of the parameters α is 
 
α p + 1 = α 

p + γ  p ⋅ Δα 
p,  p = 0, 1, 2,..., 

 
Δαp = α – αp,  γp ≡ 1. (6) 
 

Here, the increment  
p in each step is calculated by solving 

of a system of linear equations (SLE) of the form 
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where p = 0, 1, 2,.... In formula (7) 
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is the product of the matrices of the partial derivatives of 
the model lidar return (2) with respect to the parameters α. 
The subscript p is the step number and indicates that the 

derivatives are calculated at point α = α 
p,  p = 0, 1, 2,..., 
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is the column–vector of the free terms. 
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is the reference column–vector of the free terms which 
result from taking account of the supplemental data (3). 
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is the diagonal matrix of weights ωii obtained in the same way 

as the vector ∑
j=1

l

Kjβ
~*

j by taking Eq. (3) into account 

To prove statement (7), it is sufficient to substitute the 
linearized systems (2) and (3) into the functional (4), to take 
the derivatives with respect to the vector of parameters Δα, 
and to set them equal to zero. 

It should be noted that the proposed method (6) for 
determining the parameters α (Eq. (1)) is more stable than the 
Gauss⎯Newton method in that a solution of the obtained  
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SLE (7) also exists (owing to matrix K~) in the case of a 
singular or ill–conditioned matrix. Under certain conditions, 

the matrix FTF + K~ is close to the matrix FTF + βE which 
has been proposed by A.N. Tikhonov5 for the regularization of 
the solution of the SLE (α > 0, E is the identity matrix). 

Indeed, using as weighting factor K an approximation of 

the form K(ui) = exp{–u
2

i} for (α
p

i  – β
*

jk)/h . 1 and l = 1 we 

obtain K(ui) ≈ β, i = 1, m
⎯

, and K ≈ βE, where β is small. 

It should also be noted that the problem of choosing the 
control parameter h in the kernel K(⋅) is similar to the 
problem of choosing the regularization parameter β and can be 
solved by well–known methods5 both in each step p and once 
at the start of the iteration (6). 
 

 
 

FIG. 1. Reconstruction of lidar returns by the 
Gauss⎯Newton method in the presence of underwater 
light scattering formations. Discrete time t is plotted 
along the abscissa with a step of 25 ns (2.8 m depth 
resolution). The signal intensity is plotted in relative 
units. The solid line represents the actual lidar signal, 
the dashed line — the reconstructed signal. There is no 
cut–off limit on the input signal. 
 

 
 

FIG. 2. The same as in Fig. 1. The lidar return from the 
ocean surface is limited. 
 

Results illustrating the efficiency of the proposed 
algorithm (6) are shown in Figs. 1–4 and in Table I. They are 
based on experimental data obtained in the course of different 
flights, including those described in Ref. 6. 

Shown in Fig. 1 and 2 are actual lidar returns (solid 
line) described by Eq. (1) and their reconstructed values 
(dashed line) obtained by the Gauss⎯Newton method. The 

second spike on the curves for S
2

t and S
1

t, i.e., the echo pulse 

just from under the water, characterizes an anomaly. The true 
behavior of the anomaly described by the right side of Eq. (1) 
centered at ti = 7 is represented by a solid line (the single 

spike). The discrete model (1) is given in the form of Eq. (2) 

with εi = 0, ti = i, i = 1, 9
⎯

). 
 

 
 

FIG. 3. Reconstruction of lidar returns by the modified 
Gauss⎯Newton method taking into account supplemental 
data Eq. (3). Notation is the same as in Fig. 1. There is 
no cut–off limit on the input signal. 
 

 
 

FIG. 4. The same as in Fig. 3. The lidar return from the 
ocean surface is limited. 
 

Figures 3 and 4 show the values of S~
1

t and S~
2

t 

reconstructed by the modified Gauss⎯Newton method (6) 

(dashed line) and the actual lidar returns S
1

t and S
1

t (solid 

line). 
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The approximate values β
*

jk of the parameters αj from 

Eq. (1) with a 20–30% relative error were employed as the 
supplemental data (3), i.e., 

 

β
*

jk = αj + αj 

c ηk, k = 1, 5
⎯

, j = 1, 6
⎯

. 
 

Here ηk are normally distributed random quantities with 

zero mean and unit variance σk = 1, K = 1, 5
⎯

. The 

parameter c characterizes the noise level, c ∈ (0.2–0.3). 

The second signal S
∼

t

2
 shown in Figs. 2 and 4 represents 

the case in which the useful signal is outside the input 
dynamic range of the ADC and the signal is cut off at the 
level S(t) = 63 units of the ADC code. The cutoff is 
depicted by a step in the solid line, and in discrete 
model (2) the cutoff corresponds to an erroneous value of 
the signal at the point t

4
 = 4, S(t

4
) = 63. 

It can be seen from Fig. 2 that the fallout of one 
correct value from the lidar return causes a significant 
error, especially in the estimation of the amplitude of the 
lidar return from an anomaly by the Gauss⎯Newton 
method. The relative error is greater than 100%. 

Fig. 4 shows similar results for the modified 
Gauss⎯Newton method (6), using the supplemental  
data. Here, the error in the estimated amplitude of  
the lidar return from the anomaly is about 14%. 

Relative errors in the reconstructed values of the 
parameters α

1
, α

2
, α

5
, and α

6
, which characterize  

the pulse amplitudes and the positions of their centers  
are given in Table I. It can be seen from Table I that  
the accuracy of the parameters reconstructed by  
the Gauss⎯Newton method for a signal with a value  

of one count is much worse than for the signal St 
2
.  

The proposed method (6) provides more stable  
estimates. 
 

TABLE I. Relative errors in the reconstructed amplitudes α
1
 and α

2
 of the signals St 

1
 and St 

2
 and the positions of their centers 

α
5
 and α

6
 obtained using the Gauss⎯Newton (GN) method and our modified version of the Gauss⎯Newton method (GNM). 

 

Method α
1
 α

2
 α

5
 α

6
 

 S
1

t S
2

t S
1

t S
2

t S
1

t S
2

t S
1

t S
2

t 

GN  
GNM 

4.4⋅10–4 
3.9⋅10–2

 

 0.3 
4⋅10–2 

 

0.37 
0.15 

 

1.14 
0.14 

 

1.6⋅10–4 
1.0⋅10–2 

 

7⋅10–2 
0.01 

 

4.2⋅10–2 
2.5⋅10–2 

 

7.0⋅10–2 
2.5⋅10–2 

 

 
Finally, it should be noted that our method of 

estimating the lidar return parameters makes it possible 
to take into account supplemental data provides more 
stable results as compared to the Gauss⎯Newton method, 
thus leading to a considerable improvement in the 
accuracy of the estimated parameters of underwater light 
scattering formations. 
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