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A closed system of equations for the correlation function of tong-wave radiation 
is derived and a method for solving it based on the use of a broken clouds model 
constructed using Poisson point fluxes is proposed. 

 

A cloud field, considered as an ensemble of clouds 
which scatter and emit thermal radiation, is a stochastic 
formation. A radiation field transformed by such a cloud 
field also becomes random, thus making it necessary to use 
statistical methods to study the interaction of cloud fields 
and radiation fields. Many natural processes, such as 
heating of the atmosphere and the underlying surface of the 
Earth, the melting of snow, and so on, are dependent not 
only on the average amount of incident radiation energy but 
also depend on its spatial and temporal variability. 
Therefore, the solution of many practical problems requires 
comprehensive information on the statistical properties of 
radiation field or, at least, on their mean value, variance, 
and correlation function. 

It is known that calculations of long-wave radiation 
transfer in the atmosphere must take into account the 
absorption of radiation by atmospheric gases. Usually, 
atmospheric transmission functions are used for an 
approximate account of this absorption. In our further 
discussion we shall deal only with the interaction of 
radiation and the cloud material and therefore the methods 
developed here for calculating the statistical characteristics 
of the radiance field are only applicable to studies within 
the atmospheric transparency windows. 

The calculations of the mean intensity of thermal 
radiation were made using formulas derived in Ref. 1. It 
was assumed there that the scattering of long-wave 
radiation by clouds is negligible. The applicability limits of 
this approach were studied in Ref. 2, where a statistical 
modeling algoritm was constructed for the purpose of 
estimating the mean intensity of the thermal radiation and 
the role of multiple scattering in the formation of the long-
wave radiance field is suggested. 
 

SOLUTION TECHNIQUE 
 

Let us assume that except for the cloud field the 
atmosphere is horizontally homogeneous and is characterized 
by the temperature T(z). It is also assumed that the 
atmosphere is in a state of thermodynamic equilibrium. The 
underlying surface is assumed to be a blackbody with 
temperature T

s
 = T(0). The optical model of the broken clouds 

is defined in the layer Λ (h ≤ z ≤ H) in the form of random 
scalar fields of the extinction coefficient σκ(r), the photon 
survival probability λκ(r), and the scattering phase function 
g(ω, ω′)κ(r), where ω = (a, b, c) is the unit direction vector of 
propagation, κ(r) is the indicator function of the random set 
G ∈ Λ in which the cloud material is present. The 
mathematical model of the field κ(r) is constructed using 
Poisson point fluxes.3 In this model the value of 〈κ(r)〉 = p is 
the absolute and V(r

1
, r

2
) = (1 – p) exp(–A(ω)⏐r

1
 – r

2
⏐) + p  

the conditional probability of cloud occurrence. Here 
A(ω) = A(⏐a⏐ + ⏐b⏐), where A = (1.65(N – 0.5)2 + 1.04)/D, 
N = p is the cloud intensity factor, and D is the characteristic 
horizontal size of a clouds. 

For an ordered sequence of points {r
i
}, whose 

coordinates form monotonic sequences, the n–dimensional 
probability of cloud occurrence can be factored and the 
following equation3 for decoupling of correlations is valid 
 
〈κ(r

1
) κ(r

2
) R[κ]〉 = V(r

1
r
2
) 〈κ(r

2
)R[κ]〉, (1) 

 
where R[κ] is a functional depending on the values of κ(r) 
along the segmented line passing through the points {r

i
}, 

i = 2, ..., n, and the brackets denote averaging over the 
ensemble. Neglecting the absorption of radiation by aerosol 
and atmospheric gases, within the limits of the layer Λ the 
random intensity I(r, ω) satisfies the stochastic radiative 
transfer equation for the intensity of unscattered radiation 
ϕ(r, ω) and diffuse radiation i(r, ω) can be written in the form 
 

ϕ(r, ω) + 
σ

⏐c⏐⌡⌠
E

z

 

  k(r′) ϕ(r′, ω) dξ 

= 
(1 – λ)σ

⏐c⏐ ⌡⌠
E

z

 

 k(r′)B(ξ)dξ + I
z
(ω), (2) 

 

i(r, ω) + 
σ

⏐c⏐⌡⌠
E

z

 

 k(r′)i(r′, ω)dξ = 
σ

⏐c⏐⌡⌠
E

z

 

 k(r′)Φ
i
(r′, ω)dξ, (3) 

 

Φ
i
(r′, ω) = λ⌡⌠

4π

 

 g(ω, ω′)(i(r′, ω) + ϕ(r′, ω))dω′, (4) 

 
where 
 

E
z
 = 

⎩
⎨
⎧ (h,

 
z), c

 
> 0,

(z, H), c <
 
0,

 I
z
(ω) = 

⎩
⎨
⎧I↑

h
(ω), c > 0,

I↓
H
(ω), c < 0,

 

 

r′ = r + 
ξ – z

c  ω, I
z
(ω) is the intensity of radiation from 

external sources at the boundaries of the cloud layer, and 
B(z) = B(T(z)) is the Planck function. 
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Note that if light scattering in the layers above and 
below the cloud layer is not taken into account, the 
influence of the aerosol and gaseous components of the 
atmosphere can be easily taken into account by means of the 
boundary conditions. 

The solution of Eq. (2) has the form 
 

ϕ(r, ω) = 
(1 – λ)σ

⏐c⏐ ⌡⌠
E

z

 

 B(ξ)k(r′) j(r′) dξ + I
z
(ω) j(r), (5) 

 

where the function j(r) = exp

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

– 
σ

⏐c⏐⌡⌠
E

z

 

 k(r′)dξ  can be 

interpreted as the random intensity of unscattered radiation 
at the point r assuming that a monodirectional source of 
radiation of unit power emitted along the direction ω is 

located at the point r(0) = (x(0), y(0),ξ) = r 
z – ξ

c  ω, where 

ξ = h if c > 0 and ξ = H if c < 0. 
Let the correlation function of the long-wave radiation 

intensity be represented as 〈I(x
1
)I(x

2
)〉 = 〈ϕ(x

1
)ϕ(x

2
)〉 +  

+ 〈ϕ(x
1
)i(x

2
)〉 + 〈i(x

1
)ϕ(x

2
)〉 + 〈i(x

1
)i(x

2
)〉. Here x

i
 = (r

i
, ω), 

i = 1, 2 is a point from the phase space X of coordinates and 
directions. Let us now derive equations for each of these 
components (their physical meanings are obvious) and either 
solve them or construct algorithms of their solution by the 
Monte Carlo method. 

Let the points r
1
 and r

2
 and directions ω

1
 and ω

2
 be 

chosen so that the conditions 
 

x
(0)
2  ≤ x

2
 ≤ x

(0)
1  ≤x

1
 and y

(0)
2  ≤ y

2
 ≤ y

(0)
1  ≤ y

1
 (6) 

 
are satisfied. The inequality signs in one or both of these 
relations can be replaced by the opposite ones. 
 

1. THE FUNCTIONS 〈ϕ(x
1
 )ϕ(x

2
)〉 AND 〈ϕ(x

1
)i(x

2
)〉 

 
Let us first write down Eq. (5) at the points x

1
 and x

2
, 

then multiply them and average over the ensemble of κ(r) 
 

〈ϕ(x
1
 )ϕ(x

2
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1
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2
) j(r′

2
) j(r 

1
)〉 dξ + 
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(ω

2
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1
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2
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+ I
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(ω

1
)I
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2
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1
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2
)〉 , (7) 

 

As will be shown below the construction of the Monte 
Carlo algorithms for calculating the functions 〈i(x

1
)ϕ(x

2
)〉 and 

〈i(x
1
)i(x

2
)〉, requires a knowledge of the correlations 

〈κ(r
1
)ϕ(x

1
)ϕ(x

2
)〉 and 〈κ(r

1
)ϕ(x

1
)i(x

2
)〉, which can be found 

using Eq. (5). We now multiply the expression for ϕ(x
1
)ϕ(x

2
) 

by κ(r
1
) and average it taking into account formula (1) 
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1
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1
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1
) j(r 

2
)〉 . (8) 

 
From Eqs. (7) and (8) it follows that the correlations 
〈ϕ(x

1
) ϕ(x

2
)〉 and 〈κ(r

1
) ϕ(x

1
) ϕ(x

2
)〉 can be determined 

provided that the statistical characteristics of function j(r) 
are well known. These characteristics have been obtained in 
Ref. 4 for arbitrary distribution of points x

i
 lying in one 

and the same plane. 
By multiplying expression (5) by i(x

2
) and κ(r

1
)i(x

2
) 

and averaging, takingEq. (1) into account, we have 
 

〈ϕ(x
1
)i(x

2
)〉 = 
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2
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E
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1
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E
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2
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+I
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1
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According to equations (9) and (10), the sought-after 
correlations are expressed in terms of the functions 〈j(r

1
) i(x

2
)〉 

and 〈k(r
1
) j(r

1
) i(x

2
)〉, for which simple analytical formulas 

have been obtained5 wich are valid only at 
ω

1
 = ω

⊥
 = (0.0 ± 1). In the general case of an arbitrary 

direction ω
1
 we have 
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S(r
1
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2
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1
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1
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2
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2
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2
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2
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2
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2
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1
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2
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2
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1
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2
, ω

2
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1
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2
⏐, Δy = ⏐y

1
 – y

2
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2
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pv(z~) = 〈k(r) j(r)〉 = ∑
i=1

2
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i
e
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z~ = { (z – h)/c, c > 0,
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λ
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(σ + A(ω))2 – 4A(ω)σp
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D
1
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λ
2
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λ
2
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1
,  D

2
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1
 , 

 

and for the functions 〈i(z, ω)〉 and pu(r, ω) = 〈κ(r)i(r, ω)〉 
we have now constructed algorithms5 of statistical 
modeling. Correlation functions of the intensity and the 
fluxes of diffuse solar radiation are calculated5,8 using the 
Monte Carlo method. In these algorithms the random 
weight is determined by the function S(r

1
, r

2
) and therefore 

in calculating the random weight it is necessary to take into 
account the dependence of S(r

1
, r

2
) on ω

1
. 

 
2. THE CORRELATIONS 〈i(x

1
 )ϕ(x

2
)〉 AND 〈i(x

1
 )i(x

2
)〉 

 
Let us denote the random intensities i(x

2
) and ϕ(x

2
) as 

f(x
2
). From expressions (3), (4), and (6) it follows that 

i(r′, ω
1
)f(x

2
) = R[κ(r)] is a functional which depends 

explicitly on κ(r) everywhere up to the point r′ and implicitly 
on κ(r) via the functional Φ

i
 everywhere in the layer Λ. 

Therefore formula (1) can be considered only as an 
approximation. 

We now write Eq. (3) at the point x
1
, multiply it by 

f(x
2
) and κ(r)f(x

2
) and average it, taking Eq. (1) into 

account: 
 

〈i(x
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2
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1
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2
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1
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2
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py(x
1
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2
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1
) ϕ(x

1
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2
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2
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1
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2
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1
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2
)dω′. (17) 

 

Formally, Eq. (16) does not differ from the equation for the 
function u(x) = 〈κ(r)I(x)〉/p (see Ref. 2) with the exception 
of the additional variable x

2
 in Eq. (12), which can be 

considered as a parameter. This circumstance allows as to 
avoid cumbersome calculations and write down the following 
integral equation for the function 
 

W(x
1
, x

2
) = Y(x

1
, x

2
) + y(x

1
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2
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1
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2
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E
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⎝
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1
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2
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1
, x

2
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By substituting Eq. (18) into Eq. (16) and making the 
transformations which are described in defail in Ref. 2, it is 
possible to write the function 〈i(x

1
) f(x

2
)〉 in the following form: 
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1
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2
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1
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2
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Now let us consider the algorithm for estimating the 
linear functional 〈i(z

∗
, ω

∗
) f(x

2
)〉 using the Monte Carlo 

method. Since the radiation detector is localized where as 
the radiation source is distributed over the phase space of 
coordinates and directions, we shall use the method of 
conjugate trajectories.2 

We write the adjoint transfer equation  
 

ω∇I∗(r, –ω) + σκ(r)I(r, –ω) = 
 

= λσ⌡⌠
4π

 

 g(–ω, –ω′) κ(r) I∗(r, –ω′) dω + p(r, –ω), (20) 

 

 
with boundary conditions 
 

I∗(r, –ω)⏐
c>0
z=h

 = I∗(r, –ω)⏐
c<0
z=H

= 0, (21) 

 

and source density 
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p(r, –ω) = δ(z – z
∗
) δ(ω + ω

∗
). (22) 

 

The integral equation for the function 
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has the form7 
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Using the optical reciprocity theorem6 one can show that 
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The possibility of using the Monte Carlo method to 
estimate the functional 〈i(z

∗
, ω

∗
) f(x

2
)〉 is ensured by the 

convergence in the space L
1
 of the Neumann series of 

Eq. (23). 
Let us define the Markov chain {x

i
} with initial density 
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0
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i
 z~

0
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where M is the symbol of mathematical expectation over 
the ensemble of realizations, N

1
 is the random number of 

the last state, and the random weight  
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z
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*
c  ω  is the point where 

the first collision taken place. 

In order to calculate the functional 〈i(z
∗
, ω

∗
) f(x

2
)〉 it is 

necessary to model the trajectories starting from the point 
r
∗
 = (0, 0, z

∗
) with the initial direction ω

∗
 and then to 

calculate the value of y(r
n
, ω
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, x

2
) at every collision point. 

Note that the function y(x
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(17), and therefore if f(x
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correlation y(x
1
, x

2
) can be obtained from Eqs. (8) and (10). 

Solution of the problem of thermal radiation transfer 
through nonisothermal clouds requires a knowledge of the 
temperature profile within the cloud. Because of the 
complicated shape of B(T(z)) it is necesary to use numerical 
integration in the solution of Eqs. (7)–(10). On the other 
hand, if one assumes that the clouds are isothermal, then 
Eqs. (7)–(10) can be considerably simplified and for the 
sought-after correlations we obtain 
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2
) – 〈 j(z

1
)〉 × 〈i(ω

2
) 〉), (28) 

 

〈 k(r
1
) ϕ(x

 
1
) ϕ(x

 
2
) 〉 = pΨ(z

1
, ω

1
) 〈 ϕ(z

2
, ω

2
) 〉 + 

 

+ (Ψ(z
2
, ω

2
) – 〈 ϕ(z

2
, ω

2
) 〉) pΨ

A
(z

1
, ω

1
) × 

 

× exp(–Ax Δx – Ay Δy), (29) 
 

〈 k(r
1
) ϕ(x

 
1
) i(x 

2
) 〉 = pΨ(z

1
, ω

1
) 〈 j(z

2
, ω

2
) 〉 + 

 

+(u(z
2
, ω

2
) – 〈 i(z

2
, ω

2
) 〉) pΨ

A
(z

1
, ω

1
) × 

 

× exp(–Ax Δx – Ay Δy), (30) 
 
Ψ(z, ω) = 〈κ(r)ϕ(x)〉/p= 
 

=(1 – λ)B
c
 + v(z~)(I

z
(ω

2
) – (1 – λ)B

c
), (31)  

 

Ψ
A
(z, ω) = (1 – λ)B

c
 + v

A
(z~) (I

z
(ω

2
) – (1 – λ)B

c
), (32) 

 
B

c
 = B(T

c
), T

c
 is the of clouds-temperature. Note that at 

A(ω) = 0, Ψ
A
(z, ω) = Ψ(z, ω). 

Substituting Eqs. (29) and (30) in Eq. (26) we obtain 
 

〈 j(x 
1
) ϕ(x

 
2
) 〉 = 〈i(z

1
, ω

1
)〉 〈ϕ(z

2
, ω

2
)〉 + (Ψ(z

2
, ω

2
) – 

 

– 〈ϕ(z
2
, ω

2
) 〉 )M ∑

n=0

N
1
 Q

n
Ψ

A
(z

n
, –ω

n+1
)exp(–AxΔx

0
–AyΔy

0
), (33) 

 

〈i(x 
1
)i(x 

2
)〉 = 〈i(z

1
, ω

1
)〉 〈i(z

2
, ω

2
)〉 + (u(z

2
, ω

2
) – 

 

–〈i(z
2
, ω

2
)〉) M∑

n=0

N
1

 Q
n
Ψ

A
(z

n
, –ω

n+1
) exp(–AxΔx

0
–AyΔy

0
), (34) 

 

Δx
0
 = ⏐x

0
 – x

2
⏐, Δy

0
 = ⏐y

0
 – y

2
⏐. 
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Thus, using the stochastic equation of radiative 
transfer we have obtained the equations for  
the correlation function of the long–wave  
radiation intensity and have developed methods  
and algorithms for their solution. 
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