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Within the framework of the optical model of a cloud in the form of an ensemble 
of oriented plates and on the basis of the two-angle scheme of sounding, a system of 
two nonlinear equations is obtained for determining the refractive index and one of 
the angles of orientation of the plates. The procedure of solving this system is reduced 
to a simple iterative algorithm. The algorithm is illustrated by a two-dimensional 
nomogram, whose output parameters are the refractive index and the angle orientation 
of the plates. Another angle of plate orientation is determined from the properties of 
the depolarization ratio. 

 

The angles of orientation and the refractive index of the 
ice plates are classified among those parameters of crystalline 
clouds which are subject to the minimum variations compared 
to the rest parameters. In addition, within the narrow ranges 
of variations in these parameters it is always possible to 
indicate one a priori known value for each of them. In fact, 
for low horizontal wind velocity, the ice plates are oriented in 
the horizontal plane due to their movement in the field of 
gravitational forces. As to the refractive index, its value 
measured for a pure ice at a given wavelength in laboratory 
conditions may be taken as the a priori quantity. However, 
the values of the refractive index of different atmospheric 
crystals even at a fixed wavelength are spread in the intervals 
whose end points differ from each other by tens of per cent. 
This is apparently caused by the presence of various 
microimpurities in natural crystals. In analogy with the case of 
the refractive index, the ice plate orientation cannot be 
considered to be a priori known. In fact, the horizontal 
component of wind velocity shifts the direction of air flow 
around every particle of the polydisperse medium from the 
vertical direction. This, in its turn, alters the plate orientation.  

We have studied in Ref. 1 the backscattering properties 
of a system of oriented plates with different diameters and 
thicknesses. It is well known that clouds consisting mainly of 
oriented ice plates are most often encountered in the 
atmosphere.2,3 Therefore, the model of a polydisperse medium 
proposed in Ref. 1 describes adequately quite the real 
atmospheric formations. Based on this model it was shown 
that the ratios of the parameters of the Stokes vector, in the 
first approximation, depend solely on the refractive index and 
plate orientation. This permits one to monitor the parameters 
of the polydisperse medium with the help of a polarization 
lidar without using additional information. In this paper we 
propose an algorithm for determining the refractive index and 
angles of orientation of the ice plates from the polarization 
laser sounding data.  

Assume that in addition to the measurements of lidar 
return intensity Iπ1

 the lidar configuration allows one to 

determine all three other parameters of the Stokes vector, 
i.e., Iπ2

, Iπ3
, and Iπ4

. Let us introduce into consideration 

the following ratios: Iπ2
 /Iπ1

, Iπ3
 /Iπ1

, and Iπ4
 /Iπ1

. As  

shown in Ref. 1, if the scattering volume contains oriented 
ice plates, the following formula is valid for these ratios:  
 
Iπj

Iπ1

 = 
Aj

A1
 ,   j = 2, 3, 4 , (1) 

 
with an error of not more than 2%. Here Aj are certain 

coefficients dependent on the angles of orientation and 
refractive index of plates as well as on the polarisation state 
of incident radiation. Presented in Ref. 1 are the relations 
for the coefficients Aj for an arbitrary polarization state of 

an incident field. In our paper we consider only the cases of 
linear and circular polarizations which are most often used 
in practice. It should be noted that in the case of linearly 
polarized incident light the ratio A2 /A1 is more informative 

while for circular polarization – A4 /A1. The ratios A2 /A1 

and A4 /A1 determined for linear and circular polarizations, 

respectively, we denote by Pl and Pc. The coefficients Pl 

and Pc were derived in Ref. 1 in the form  

 

Pl = 
(|R⎢⎢| 

2cos2γ – |R⊥| 
2sin2γ)cos2γ – Re(R⎢⎢R

*
⊥)sin

22γ

|R
⎢⎢
| 2cos2γ + |R

⊥
| 2sin2γ

 , (2) 

 

Pc = – 
2Re(R⎢⎢R

*
⊥)

|R⎢⎢| 
2 + |R⊥| 

2 , (3) 

 
where R⎢⎢ and R⊥ are Fresnel's coefficients for parallel 

and perpendicular polarized waves and γ is the angle 
between the electric vector of the electromagnetic wave 
and the plane of incidence. For ice crystals the refractive 
index n and the absorption coefficient κ are related by the 
inequality n – 1 . κ. This implies that in the expression 
for Fresnel's coefficients R⎢⎢ and R⊥ the imaginary part of 

the complex refractive index n~ = n + i⋅κ can be neglected. 
In this case Fresnel's coefficients become real that allow 
us to simplify Eqs. (2) and (3). As a result, we have  
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Pl = 
(R⎢⎢

2cos2γ – R⊥
2sin2γ)cos2γ – R⎢⎢R

*
⊥sin

22γ

R⎢⎢
2cos2γ + R⊥

2sin2γ
 , (4) 

 

Pc = – 
2R⎢⎢R⊥

R⎢⎢
2 + R⊥

2 , (5) 

 

where R⎢⎢ and R⊥ are real Fresnel's coefficients determined 

from the following formulas:  
 

R⎢⎢ = 
n2cosβ – s

n2cosβ + s
 , R⊥ = 

cosβ – s
cosβ + s

 , s = n2 – sin2β . (6) 

 

Here β is the acute angle between the direction of propagation 
of incident wave and the normal to the base of any ice plate.  

Let Pl and Pc be the measurable quantities. It can be 

easy to seen that each of these quantities is related, at least, to 
three (see Eqs. (2) and (3)) or two (see Eqs. (4) and (5)) 
unknowns, i.e., the problem of determining the parameters n, 
κ, and β is ambiguous. In this connection, one possible way of 
eliminating this ambiguity, which is used in solving this kind 
of problems, should be mentioned. Equations (2) and (4) have 
a free parameter, namely, the angle γ, which can be varied by 
rotating the lidar about its axis. As a result, one can 
experimentally measure Pl and Pc as functions of γ and then 

using the least–squares technique to fit the values of n, κ, and 
β using Eq. (2) or n and β using Eq. (4). However, in this 
case such an approach makes it impossible to adequately 
resolve the ambiguity of the problem. Actually, the function 
Pl determined from Eq. (4) is uniform in Fresnel's coefficients 

R
⎢⎢ and R⊥. Hence, only the ratio of Fresnel's coefficients can 

be determined but it incorporates two unknown parameters n 
and β. Even though the introduction of small attenuation κ 
formally removes the ambiguity, it calls for the solution of an 
ill–posed problem of determining the parameters n, κ, and β 
from Eq. (2). Therefore, we futher deal with different 
approach to remove the ambiguity in the determination of 
angles of orientation and refractive index of the ice plates.  

Let Eqs. (4) and (5) be reduced to a form  
 

pl = 
(p2cos2γ – sin2γ)cos2γ – p sin22γ

p2cos2γ + sin2γ
 ; (7) 

 

pc = – 
2p

p2 +1
 , (8) 

 

where p is the ratio of Fresnel's coefficients, i.e., p = R⎢⎢/R⊥. 

It is obvious that one can easily express the parameter p in 
terms of the measured value Pc using formula (8) or to adjust 

its value to fit the experimental curve Pc(γ) with the help of 

Eq. (7). Thus, the parameter p could be regarded as known 
and we may proceed to calculating the unknown parameters n 
and β on which it depends. However, it should be noted here 
that the angle β alone does not specify the plate orientation. 
In fact, the angle β determines only the possible directions of 
normals to the base of one or other plate which form a cone 
around the direction of the incident wave propagation. But 
from the set of normals corresponding to the angle β, we may 
always choose the single one if the plane of wave incidence is 
prescribed. It should be noted in this connection that if the 
electric vector of linearly polarized wave lies in the plane of 
incidence (γ = 0°) or is perpendicular to it (γ = 90°), the 
measured quantity Pl reaches a maximum equal to unity. 

Moreover, it is known1 that the curve Pl(γ) on a segment 

[0°, 90°] is asymmetric, i.e., its minimum is shifted with  

respect to the center toward the left end γ = 0°. Thus, the 
analysis of the change of the parameter Pl due to rotating the 

lidar around its axis enables one to determine the plane of 
wave incidence.  

Let the parameters Pl (j = 1, 2) be determined for two 

sounding directions with the angle Δ between them. Let also 
the vectors of these directions lie in the same plane of 
incidence. Then the unknown parameters n and β can be found 
from the system of equations  
 

p1 = R⎢⎢(β, n)/R⊥(β, n) ; 

  (9) 

p2 = R⎢⎢(β + Δ, n)/R⊥(β + Δ, n) . 
 

The system of equations (9) can be most conveniently solved 
by using the iterative algorithm described below. Let n0 be the 

initial approximation of the refractive index n. Then the 
angles β01 and β02 corresponding to this refractive index n0 are 

calculated. These angles determine the deflaction of the 
normal to the plate base from the two sounding directions. To 
do this, we shall make use of the following chain of formulas:  
 

aj = 0.5 
⎝
⎛

⎠
⎞1

 
–

 

1
pj

 
n2

0 + 1

n2
0 – 1

 ;  bj = 1/pj ( )a2
j + 1/pj + aj  ; 

 

cj = (n2
0 – 1)/[((1 – bj)/(1 + bj))

2 – 1] ; (10) 

 

β0j = arccos(cj) . 
(The index j takes here the values 1 and 2). After β01 and β02 

have been calculated, the condition ⏐β01 – β02⏐ = Δ is 

verified. If the condition holds, the iteration stops and β01 and 

n0 are considered to be determined. If this condition does not 

hold we must change the value of the refractive index n. In 
the next step of the algorithm n should be increased if ⏐β01 –

 β02⏐ < Δ and decreased if ⏐β01 – β02⏐ > Δ. The performance of 

the algorithm can also be illustrated by a nomogram depicted 
in Fig. 1.  

Let two values of the parameter p be known, namely, 
p1 = –0.612 and p2 = –0.462 and the latter (p = p2) be 

obtained for the sounding direction being at the angle Δ = 6° 
with respect to the initial one. The parameters p1 and p2 

determine two ratios of Fresnel's coefficients, i.e., R⎢⎢ = p1R⊥ 

and R⎢⎢ = p2R⊥. These relations describe two straight lines 

which cross the coordinate origin. Variations in the refractive 
index in the iterative process are equivalent to movement 
along these straight lines. In each step of the algorithm we can 
always determine two points where these straight lines 
(R

⎢⎢ = p1R⊥ and R⎢⎢ = p2R⊥) cross the line of constant n = nj 

corresponding to jth iteration of the refractive index. One line 
of constant β (βj1 and βj2) crosses each of these intersection 

points. If the angle between these lines is 6° then the 
algorithm stops. The sought–after points on the nomogram 
with the angle Δ = ⏐βj1 – βj2⏐ = 6° between them are denoted 

by A and B. The two lines of the constant parameters n and β 
cross each of these points: the lines n = 1.30 and β = 30° cross 
the point A, and the lines n = 1.30 and β = 36° cross the point 
B. It is evident that in this case n = 1.30 and β = 30° are the 
sought–after quantities. The similarly lines for parameters n 
and β in the nomogram do not intercross what ensures that the 
refractive index n and the angle of orientation β are 
determined unambiguously.  
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FIG. 1. Nomogram for determining the refractive index n and the angle of orientation β of the ice plates: the 
dimensionless parameters p1 = –0.612 and p2 = –0.462 are uniquely related to the angles β0 = 30° and β2 = 36° and 

the refractive index n = 1.30 for Δ = ⏐β1 – β2⏐ = 6°.  
 

The proposed algorithm is valid if the condition n –
 1 . κ is satisfied and permits one to determine solely the 
unknown parameters n and β, i.e., this condition a priori 
excludes the parameter κ from the algorithm. Moreover, any 
attempt to develop the algorithm which allows one to 
determine all three parameters n, κ, and β will fail, except 
for the case, in which n – 1 ≈ κ. As was mentioned above, 
in this case the parameters n, κ, and β are fitted to the 
experimental curve Pl(γ) by means of Eq. (2).  

In developing the algorithm we assumed that all ice 
plates are in fixed positions, while in fact the plates have 
flutter, i.e., they oscillate near a certain plane which can be 
conditionally taken as an orientation plane. The amplitude 
of these oscillations is, as a rule, insignificant. In particular, 
it was shown in Ref. 4 that the angle of flutter for the 
plates is somewhat larger than 0.5°. Moreover, the curves of 
constants n and β on the nomogram are monotonic and on 
small intervals they are practically linear. As a result, by 
averaging the characteristics Pl and Pc over   

a narrow interval of angles [β – Δβ, β + Δβ] the obtained 

characteristics Pl  and Pc  can be expected to be very 

close to these for the plates located in the plane of 
orientation.  

In conclusion it can be summarized that in this paper 
we have constructed the algorithm which permits one to 
determine the orientation and refractive index of the ice 
plates from the data of single–frequency polarization laser 
sounding without using a priori information.  
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