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A technique for constructing the Pade representation is developed on the basis of 
the perturbation theory to describe vibrational–rotational spectra of diatomic 
molecules. The procedure provides fast summation of the series over the rotational 
quantum numbers. The physical meaning of Pade approximants becomes clear by 
examining the problem of the molecular potential function. The theoretical 
investigations are applied to calculations which show good prospects of the proposed 
approach in examples of solving the inverse problems on the force constants of the H2 

molecule. The values of the potential function obtained for the repulsive part of the 
potential up to the dissociation limit agree well with its "experimental" RKR–values. 

 
In our previous papers1,2 we have described the 

possibility of representing Pade forms on the basis of the 
vibrational quantum numbers in terms of the potential 
constants. The technique developed has been brought to 
practical applications. It can be used for processing of the 
vibrational–rotational spectra in analogy with the Danham 
formulas3 but with a considerably improved quality of the 
extrapolation of the calculated potential constants. At the 
same time it differs greatly from the first attempts to adapt 
the perturbation theory for the derivation of Pade forms for 
the representation of energy.4–6  
 

SERIES APPROXIMATION BASED ON THE  

ROTATIONAL QUANTUM NUMBERS  
 

1. The aforenamed technique is not limited by the 
construction of Pade approximants to the energy series only 
on the basis of the vibrational quantum numbers. It also 
provides the possibility of their approximation on the basis 
of the rotational quantum numbers and, in the same way as 
in Refs. 4–6, in terms of the small parameter of the 
perturbation theory. Our preliminary calculations have 
shown, however, that the use of the "rotational" 
approximants, unlike their "vibrational" counterparts, 
improves but insignificantly the results for the HBr 
molecule.1 At the same time there are light molecules for 
which the effect of nonrigidity on the molecular rotational 
spectrum is very strong, which is evident from the results of 
our calculations for H

2
 (see Table I). In the same way as in 

Ref. 7 we employed phenomenological models in which the 
v–dependent quantities 
 

c
v
j  = ∑

r=0

r
max

 Yrj(v + 1/2)r  

 

were used instead of the J–dependent parameters c
J
j , where 

Yrj are the well–known Danham spectroscopic parameters. 

The extrapolation of the energies EvJ of the ground state 

with v = 0 has been essentially improved (see Table I). The 
processing and comparison of the corresponding 
vibrational–rotational energies were performed using the 

values calculated ab initio8 because the experimental 
collection of frequencies is well–known to be less complete. 
The quality of processing of the energies EvJ with J ≤ 20 
can be judged by the values of the sum of the squared 
discrepancies Σ and by the maximum discrepancy ΔEmax 

(Table I). It is the H
2
 molecule which is hereinafter used to 

test nonphenomenological Pade forms based on the 
rotational quantum numbers.  
 
TABLE I. The quality of extrapolation of rotational 
energies (cm–1) of the H

2
 molecule in the ground 

vibrational state (v = 0) ΔEvJ = E
ab initio
vJ  – E

calc
vJ  for the 

values of J satisfying the inequality 21 ≤J ≤ 31 for 
Danham [6/0] and Pade [4/2] phenomenological models 
of the Hamiltonian. 
 

J ΔEvJ[6/0] ΔEvJ[4/2] 

J ΔEvJ[6/0] ΔEvJ[4/2]

21 
22 
23 
24 
25 
– 

0.87 
4.25 
14.04 
38.08 
91.01 

– 

0.02 
0.06 
0.13 
0.26 
0.45 
– 

26 
27 
28 
29 
30 
31 

 198.63 
 404.45 
 779.05 
1423.38 
2537.18 
4344.03 

0.71 
1.02 
1.30 
1.43 
1.16 
0.60 

Σ/cm–2   5.7⋅10–3 1.7⋅10–5 

 

ΔE
max

/sm–1 0.05    0.002 

 
2. Pade approximants are constructed using the 

iterative procedure9 with only one iteration.2 The relation 
for the energy shift in the state s is written in the form:  

 

ΔEs = <s⏐H′⏐s> + <s⏐H′ 
Qs

ε – H(0) (ε – Es + H′) × 

 

× ∑
k=0

l

 
⎩
⎨
⎧

⎭
⎬
⎫

 
Qs

E
(0)
s  – H(0)

(E
(0)
s  – Es + H′)

k

⏐s>. 

 
Here Qs = I + Ps; /s> is the eigenfunction of the zeroth–

order approximation, ⏐s> = Ps/Ψ>s, H′ is the perturbation  
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potential, and H(0) and Es are the zeroth–order 

Hamiltonian and the exact energy, respectively. The form of 
the ε operator determines the version of the perturbation 
theory. For constructing Pade forms, ε is chosen as 
 

ε = Es – (E
(0)
s  – H(0))bg .  (2) 

 

The quantity bg includes the functional dependence on the 

quantum numbers and in the present case it is the function of 
J or of g = J(J + 1). The quantity bg is defined by the specific 

Pade form [n/m] and is chosen so that the appropriate 
denominator of the length m is included in the Pade 
representation of the energies. Then it can be shown that for 
sufficiently large values of I the desired Pade numerator of the 
length n is obtained in Eq. (1). Detailed proofs are given 
elsewhere. The case of bg= 0 corresponds to the conventional 

Rayleigh–Schrodinger perturbation theory.  
3. There are a number of procedures for treating 

rotational motions with the Hamiltonian describing the 
vibrational–rotation interaction.10 For example, it is 
assumed that β2J(J + 1) ∼ λ0 , where λ is the small 
parameter perturbation theory and β is the rotational 
constant. Then the dominant contributions to the 
spectroscopic parameters comes from the values of the 
following order of the perturbation theory:  
 

Y
d

(r,j) ∼ λ
2(r+j-1).  (3) 

 

The approach (3) is convenient for describing the states 
with large values of J, i. e. , J ∼ 10. If J ∼ 1 then 
β2J(J + 1) is the term of the second order of the 
perturbation theory proportional to λ2. It enters in the 
perturbation operator. Then the relations for the 
perturbation theory remain unchanged as compared to 
Eq. (3) but there occurs another order of perturbation 
theory proportional to the powers of λ 
 

Y
d

(r,j) ∼ λ
2(r+2j–1) .  (4) 

 

In analogy with Ref. 2, the formula for the vibrational–
rotational energy can be written as  
 

Evj = ∑
(r,j)

 
 Xrj(v + 1/2)rgj + [n/m]v .  (5) 

 
The integers n and m denote the maximum degrees of 
polynomials in g in the numerator and denominator of the 
Pade approximant, respectively. The coefficients next to 
the powers of g in [n/m]v are the combinations of the  

v–dependent spectroscopic parameters  
 

c
v
j  = ∑

r=0

r
max

 Zr,j(v + 1/2)r, 

 
where Zrj are the spectroscopic constants which, unlike the 

Danham values of Yrj , are constructed only on the basis of 

the terms of the Rayleigh–Schrodinger perturbation theory 

(ε = E
(0)
s ) incorporating resolvents.  

 
EXAMPLES OF CONSTRUCTION OF PADE FORMS 

 
1. Let us consider the approximant [0/1] for an example 

of peculiarities of representations of the vibrational–rotational 
energies on the basis of Eq. (1), namely, 

[0/1]v = 
c
v
0

1 – (c
v
1/c

v
0)g

 . 

 

On account of Eq. (1) the quantity b
v
g in Eq. (2) should be 

assumed to be equal to (c
v
1/c

v
0
). The quantities c

v
1 appear in a 

definite order N of the perturbation theory. Let us examine 
first distribution (4).  

a) In the second order of the perturbation theory, 

according to Eqs. (4) and (5), the parameters Y
(2)
0,0 and Y

(2)
2,0 

are separated into two constants X
(2)
0,0, X

(2)
2,0 and Z

(2)
0,0, Z

(2)
0,0. 

An ordinary meaning of the parameters Y
(0)
0,0 , Y

(0)
1,0 , and 

Y
(2)
0,1 is retained. Here the superscript denotes the order of 

the perturbation theory, in which the given parameter 

appears. Thus, the constant c
v
0 can be written as  

 

c
v
0 = Z

(2)

(0,0) + Z
(2)

(2,0)(v + 1/2)2,  (6) 
 

while the constant c
v
1 is absent in this order.  

b) The quantity c
v
1 appears in the forth order of the 

perturbation theory c
v
1 = Z

(4)
1,1(v + 1/2), and in this very 

order the terms incorporating Z
(4)
1,0 and Z

(0)
3,0 are added to the 

right side of Eq. (6).  
2. The approximant [1/1]. Its construction requires the 

constants c
v
0, c

v
10 and c

v
2 to be wellknown. According to 

Eq. (4) the quantity c
v
2 appears in the sixth order of the 

perturbation theory. In the case of Eq. (3) the quantities c
v
0, c

v
1 

and c
v
2 have the same order of the perturbation theory. 

Therefore, in processing the rotational states with large J 
according to Eq. (3) by means of [1/1] the expansion terms 
have different orders of the perturbation theory.  

3. The approximant [2/1]. This is the simplest Pade 
form which is consistent with distribution (3), and the 

constant bg = (c
v
3/c

v
2) g in Eq. (2) is proportional to λ2. 

According to distribution (4) the coefficient c
v
3 appears in 

the tenth order of the perturbation theory.  
4. An advantage of the procedure developed here is in 

the fact that the simple version (1) which is most close to the 
Rayleigh–Schrodinger perturbation theory, exactly results in 
the classical Pade constructions with the parameters ZrJ . This 

procedure makes it possible to use all the well–known 
formulas relating the Danham spectroscopic parameters YrJ 

and the molecular constants of diatomic molecules: the 
harmonic frequency ω, the rotational constant β, imposed and 
the anharmonic constant αi. The restrictions on the variety of 

Pade forms [n/m] are, in fact, determined by the number of 
the parameters YrJ for which these formulas are wellknown. 

According to Refs. 11 and 12 they have been derived for all r 
and j satisfying the conditions r + j = 10 and r ≤ 6. In 
addition to Pade representations mentioned above, those 
currently realized in practice are Pade forms [n/m] with 
n + m = jmax = 10. They can be used directly for solving the 

inverse problems of the determining the potential function.  
 

RESULTS OF COMPUTATIONS AND DISCUSSIONS  
 

To describe the vibrational–rotational states of H
2
 in 

terms of the potential constants we have chosen theoretically 
the form [4/2] (Table I), which proved to be a good 
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approximant which, on account of Eq. (5), represents 
schematically the energies EvJ as [6/0] + [4/2]. We have used 

the results of the ab initio calculations8 of the ground 
electronic state as the "observed" processed energies of a 
hydrogen molecule.  

We have calculated the states with large J numbers 
(J > 10). Therefore, distribution (3) over the orders of the 
perturbation theory has been taken into account. The form 
[4/2] requires the tenth order of the perturbation theory to 
be considered. This makes it possible to determine 12 
molecular constants by solving the inverse problem.  

A comparison of the values of molecular constants 
(Table II) is in favour of the combined model 
[6/0] + [4/2]. Indeed, the value of the harmonic 
frequency ω differs but slightly (by ∼2 cm–1) from the 
values obtained in processing of low excited states,13 
while in the second column the difference is > 30 cm–1. 
The constants given in the third column are less 
distorted. Presented in Table II are only the stable values 

of anharmonic coefficients, namely, {a}
5
1=1 . The sum Σ of 

squared deviations of energies in Pade computations is 
much smaller (Table II) than that found in the 
computations according to the Danham procedure. The 
potential function has been obtained as a result of 
processing of the first seven vibrational bands including 
ab initio values EvJ (v = 0, 1, 2, ..., 6 with J ≤ 20, 18, 

16, 13, 10, 5, 3), respectively) given in Ref. 8. 
 

TABLE II. The values of potential constants of the H
2
 

molecule calculated using the conventional Danham 
procedure [6/0] and our technique based on Pade forms 
[6/0] + [4/2] ; units of measurement are [ω] = cm–1, 
[β] = 10, and αi = 10.  
 

Constant Danham model  
[6/0] 

Pade from model 
[6/0]+[4/2] 

ω 

4368.8400 4402.981(129)

β 

1.669796(301) 1.6625524(253)

α
1
 

–1.33869(651) –1.329299(182)

α
2
 

3.1264(186) 2.55973(220)

α
3
 

–8.1656(241) –4.6142(114)

α
4
 

16.745(274) 8.5278(177)

α
5
 

 –20.18(158) –16.183(105)

Σ/cm–2
 

684.2 0.56

 
It is worth noting, when comparing the capabilities of 

the two approaches, that the ratio ED/EP of the values of 

energies extrapolated using the calculated constants 
presented in Table II for Danham and Pade models in the 
ground vibrational state v = 0 of the H

2
 molecule is 

represented by a smooth function of J and ranges from 40 at 
J = 21 to 453 at J = 31.  

Our results (Table III) show that the procedure 
developed here for constructing the potential functions of 
light molecules gives practically the same internuclear 
spacing at the turning point for the repulsive part of the 
potential energy curve up to the dissociation limit as the 
"experimental" values obtained by the RKR–method (see 
Ref. 14). At the same time, using the Danham procedure we 
have obtained starting from v = 10 (Table I) quantitatively 
incorrect behavior or the potential energy curve.  
 

TABLE III. The internuclear spacing rmin (Å) in the H
2
 

molecule for the repulsive part of the potential energy 
curve at turning points of the vibrational states  v.  
 

 r
min

 

v KRR[14] 

Danham 
model [6/0] 

Pade from model 
[6/0]+[4/2] 

–0.5 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

0.7416 
0.6333 
0.5706 
0.5345 
0.5087 
0.4886 
0.4726 
0.4594 
0.4485 
0.4390 
0.4315 
0.4250 
0.4197 
0.4160 
0.4128 

0.7416 
0.6330 
0.5716 
0.5363 
0.5109 
0.4908 
0.4738 
0.4589 
0.4450 
0.4314 
0.4155 

– 
– 
– 
– 

0.7416 
0.6332 
0.5707 
0.5346 
0.5088 
0.4890 
0.4730 
0.4599 
0.4489 
0.4396 
0.4318 
0.4253 
0.4200 
0.4159 
0.4129 

 

Specific calculations performed in this paper confirm that 
Pade approximations on the basis of the rotational quantum 
numbers according to the formulas of the perturbation theory 
have good prospects. Together with a successful representation 
of the state energies on the basis of the vibrational quantum 
numbers,1,2 as applied to the anharmonicity problem, the 
technique proposed can, on the whole, be useful in practice for 
describing high excitation vibrational–rotational states of 
light nonrigid molecules. In addition, it provides an accurate 
reconstruction of the repulsive part of the potential energy 
curve in agreement with the "experimental" RKR–values. 
However, the RKR–values are obtained using experimental 
vibrational energies which, as a rule, are not available near the 
dissociation limit for most diatomic molecules. The procedure 
proposed here is more advantageous in this respect.  
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