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The probleì of reconstructing the two–dimensional distributions of the attenuation 
and backscattering coefficients from the data of the airborne tomographic sounding of the 
atmosphere is considered. Solutions of the integral equations of two–beam and three–
beam tomographic lidar sounding have been obtained analytically. It has been shown 
that in this case it is not unnecessary to use any a priori assumption regarding the 
characteristics sought for to reconstruct the attenuation and backscattering coefficients. 
The solutions obtained in this paper can serve as the basis for the construction of new 
calculational algorithms for tomographic laser sounding of the atmosphere.  

 
At present the number of investigations associated 

with the airborne lidar study of the spatial distribution of 
aerosol and gaseous components of the atmosphere 
increases.1-3 To solve such problems under conditions in 
which in the process of motion of the lidar relative to the 
region of space under study sounding is performed along 
different directions, the new promising methods of 
interpretation of lidar data may be proposed based on the 
ideas of reconstructive tomography.4 Such an approach was 
developed in Refs. 5 and 6, where the interrelation between 
the methods of transmission tomography and lidar sounding 
was obtained and the numerical algorithms for interpreting 
the data of two–beam and three-beam tomographic 
sounding of the atmosphere from airborne lidar were 
presented. In this paper the solutions of the integral 
equations of two-beam and three–beam tomographic laser 
sounding of the atmosphere are obtained analytically which 
may serve as a basis for construction of new computational 
algorithms.  

1. Statement of the problem. We shall consider the 
mathematical formulation of the problem of tomographic 
sounding of the atmosphere from airborne lidar. An analysis 
is performed for a two-dimensional observation scheme 
similar to that considered in Ref. 6 and is shown in Fig. 1. 
The plane of the figure coincides with the sounding plane 
passing through the direction of lidar motion and the 
direction of sounding. We fix the Cartesian coordinates 
(x, z) on the sounding plane with the x axis coinciding with 
the direction of lidar motion. For definiteness we assume 
that the lidar moves along the straight line in the horizontal 
plane, while sounding is carried out in the direction 
n = (sinϖ, cosϖ) characterized by the polar angle ϖ 
measured from the direction toward the nadir. Let us 
assume that the lidar is located at the point r* = (x*, z*). 
Then the lidar signal from scattering volume located at the 
point r = (x, z) in the single scattering approximation is 
given by the relation  
 

S(r*, ρ, n) = β(r* + ρn)exp 

⎩
⎨
⎧

⎭
⎬
⎫ 

 
–2 ⌡⌠

0

ρ

a(r* + ρ′n)dρ′  , (1) 

 

where ρ is the distance between the lidar and the scattering 
volume, r = r* + ρn, S(r*, ρ, n) = P(r*, ρ, n)ρ 2/P

0 
A, 

where P
0
 and P(r*, ρ, n) are the power of transmitted and  

received signals, respectively, A is the instrumental constant, 
α(r) and β(r) are the attenuation and backscattering 
coefficients at the point r. Moving the lidar along the x–axis 
we perform sounding in different directions n. The problem is 
to reconstruct the spatial distribution of the optical 
characteristics α(r) and β(r) of the atmosphere from the 
received lidar signals. It was shown in Ref. 6 that, in contrast 
to the transmission tomography, it is sufficient to perform 
sounding along two directions to solve the formulated 
problem. In addition, one of the numerical algorithm available 
for tomographic processing of the lidar signals was considered. 
 

 
 

FIG. 1.  
 

To construct the analytical solution of Eq. (1) we 
transfer from the initial equation to the differential one. For 
this purpose we take the logarithm of the left and right 
sides of Eq. (1) and then differentiate both sides with 
respect to the direction n. As a result we obtain 

 
∂ lnS(r*, ρ, n)

∂n
 = 

∂ lnβ(r)
∂n

 – 2α(r) . (2) 

 
Taking into account the fact that the derivative with respect 
to the direction n of the arbitrary differential function 
f(x, z) fixed on the plane has the form  

 
∂f(x, z)

∂n
 = 

∂f
∂x
 sinϕ + 

∂f
∂z
 cosϕ , 

 
we finally have  
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∂G(r*, ρ, n)
∂n

 == 
∂L(x, z)

∂x
 sinϕ + 

∂L(x, z)
∂z

 cosϕ – 2α(x, z) , (3) 

 

where 
 

G(r*, ρ, n) = lnS(r*, ρ, n) ;  L(x, z) = lnβ(r) . 
 

Equation (3) is the basic equation of lidar tomographic 
sounding in the differential form. Given that the value of 
the polar angle ϕ is fixed, Eq. (3) represents the first–order 
partial differential equation in the backscattering coefficient 
β(x, z) which can be solved by standard methods. In 
addition, the salient feature of Eq. (3) is that it includes 
one more unknown function, namely, the attenuation 
coefficient α(r). Therefore, to solve Eq. (3) for the 
functions α(r) and β(r) we should start from the fact that 
Eq. (3) describes the family of equations depending 
parametrically on the polar angle ϕ. In this case, the variety 
and complexity of the computational systems of 
tomographic processing of the lidar signals will depend on 
the number and the magnitude of the polar angles ϕ

i
. In the 

simplest case it is sufficient to fix two polar angles 
ϕ

i
(i = 1, 2).  

2. Two–beam scheme. In the considered case each 
point r = (x, z) of the region under study is sounded from 
two different directions n

1
 and n

2
 which are characterized 

by the zenith angles ϕ
1
 and ϕ

2
 when the lidar is located at 

the points r
*

i  = r – ρn
i
 (i = 1, 2). The corresponding system 

of equations has the form  
 

∂L(x, z)
∂x

 sinϕ
i
 + 

∂L(x, z)
∂z

 cosϕ
i
 – 2α(x, z) = 

∂G
i

∂n
i

 , (4) 

 

where G
i 
= G(r

*

i , ρ, n
 
) and i = 1, 2.  

Eliminating the unknown function α(x, z) among the 
system of Eqs. (4) we can obtain the partial differential 
equation for the function L(x, z)  

 

a 
∂L(x, z)

∂x
 + b 

∂L(x, z)
∂z

 = f(x, z) (5) 

 

with the right side 
 

f(x, z) = 
∂G

1

∂n
1

 – 
∂G

2

∂n
2

 (6) 

 

and with the coefficients  
 

a = sinϕ
1
 – sinϕ

2 
;  b = cosϕ

1
 – cosϕ

2 . (7) 

 

The boundary conditions are required to obtain the unique 
solution of Eq. (5). It is most natural to specify the 
function L(x, z) at the upper boundary of the sounded 
region (z = 0): 

 

(L(x, z = 0) = L
0
(x) . (8) 

 

In so doing the function L
0
(x) can be easily determined 

experimentally since it is related uniquely to the 
magnitude of lidar signal from the upper edge of the 

region L
0
 = G(r

*

i , 0, n). The solution of Eq. (5) by the 

method of characteristics with boundary condition (8) 
have the form  

L(x, z) = L
0
(x – 

a
b z) + 

1
b ⌡⌠

0

z

f(x – 
a
b ζ, z – ζ)dζ . (9) 

 

or going over to the backscattering coefficient  
 

β(x, z) = β
0
(x – 

a
b z)exp 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫1

b ⌡⌠

0

z

f(x – 
a
b ζ, z – ζ)dζ  . (10) 

 

Formulas (9) and (10) are valid under condition when 
cos ϕ

1 
≠ cos ϕ

2
. The integrand f(x, z) in formulas (9) and 

(10) is given by the relation  
 

f(x, z) 
∂

∂x
 [G

1
sinϕ

1
 – G

2
sinϕ

2
] + 

∂

∂z
 [G

1
cosϕ

1
 – G

2
cosϕ

2
],(11) 

 

in which the arguments x and z are substituted by 
 

p = x – 
a
b ζ;  q = z – ξ, (12) 

 

while the notations are preserved for the functions 
G

1
 = G

1
(x, z) and G

2
 = G

2
(x, z) depending on the 

Cartesian coordinates. It should be noted that the partial 
derivatives of functions G

i 
(p, q) (i = 1, 2) are related by 

the equation  
 

∂G
i

∂p
 = – 

b
a ⎝
⎛

⎠
⎞∂G

i

∂z
 + 

∂G
i

∂q
 ,  i = 1, 2. (13) 

 

By substituting Eq. (11) into formula (9) on account of 
Eqs. (12) and (13) one may show that  

 

L(x, z) = k
1
G

1
(x, z) – k

2
G

2
(x, z) – c ⌡⌠

0

z

∂Ω(p, q)
∂q

 dζ,  (14) 

 

where 
 

k
1
 = 

sinϕ
1

sinϕ
1
 – sinϕ

2

 ,  k
2
 = 

sinϕ
2

sinϕ
1
 – sinϕ

2

 , 

 

c = cotan⎝
⎛

⎠
⎞ϕ

1
 – ϕ

2

2 /sin(ϕ
1
 + ϕ

2
) , 

 

Ω (p, q) = (G
1
(p, q) – G

2
(p, q)) . 

 

It follows from Eq. (14) that the final equation solving the 
problem of two–beam tomographic sounding of the 
atmosphere for backscattering coefficient has the form  

 

β(x, z) = 
S

1 

 
k
1(x, z)

S
2 

 
k
2(x, z)

 exp

⎩
⎨
⎧

⎭
⎬
⎫

–c ⌡⌠
0

z

 
∂Ω(p, q)

∂q
 dζ  . (15) 

 

By substituting the function β(x, z) from Eq. (15) into the 
first equation of system (4) one may obtain the solution for 
the attenuation coefficient after simple manipulation 

 

α(x, z) = { }ν 
∂Ω(x, z)

∂x
 + η 

∂Ω(x, z)
∂z

 + τ(x, z) /2 , (16) 
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where 
 

ν = 
sinϕ

1
sinϕ

2

sinϕ
1
 – sinϕ

2

 ,  η = 
cosϕ

1
cosϕ

2

cosϕ
1
 – cosϕ

2

 , 

 

τ(x, z) = 
1 + cos(ϕ

1
 – ϕ

2
)

bsin(ϕ
1
 + ϕ

2
)

 ⌡⌠
0

z

 
∂2Ω(p, q)

∂p ∂q
 dζ,  

 

while the function Ω(x, z) = ln[S
1
(x, z)/S

2
(x, z)] is 

determined from the ratio of lidar signals coming from the 
point r = (x, z) from two different directions n

1
 and n

2
.  

3. Symmetrical two–beam scheme. As it was 
mentioned above, solution (15) for β(x, z) was obtained 
under condition cos ϕ

1 
≠ cos ϕ

2
. The particular case of the 

equality cos ϕ
1 

= cos ϕ
2
 requires individual study. We shall 

set ϕ
1
 – ϕ

2
 = ϕ. In so doing, the only one term remains in 

the left side of Eq. (5)  
 

2sinϕ
∂L
∂x

 = sinϕ 
∂

∂x
(G

1
 + G

2
) + cosϕ 

∂

∂z
 (G

1
 – G

2
). (17) 

 

Integrating Eq. (17) with boundary condition 
L(x = 0, z) = L

0
(z) yields the following solution:  

 

β(x,z)=β(0,z)
⎩
⎨
⎧

⎭
⎬
⎫S

1
(x,z)S

2
(x,z)

S
1
(0,z)S

2
(0,z) 

1/2

exp

⎩
⎨
⎧

⎭
⎬
⎫cotanϕ

2 ⌡⌠
0

x

 

∂Ω(x′,z)
∂z

dx′

 (18) 
 

The attenuation coefficient α(x, z) is determined from the 
equation  

 

2cosϕ
∂L
∂x

 – 4α = cosϕ
∂L
∂x

 (G
1
 + G

2
) + sinϕ 

∂Ω

∂x
 . (19) 

 

As a result, determining the partial derivative 
∂L/∂z = ∂ln β/∂z from Eq. (18) we find 

 

α(x, z) = 
1
4{ }cosϕ 

dR(z)
dz  – sinϕ 

∂Ω(x, z)
∂x

 + D(x, z)  , (20) 

 

D(x, z) = 
cos2ϕ

sinϕ
 ⌡⌠

0

x

 
∂2Ω(x′, z)

∂z2  dx′ , 

 

R(z) = 2L
0
(z) – [G

1
(0, z) + G

2
(0, z)] . 

 

Equations (18) and (20) determine entirely the solution of the 
problem of the symmetrical tomographic lidar sounding of the 
atmosphere (ϕ

1
 = – ϕ

2
). It should be noted that we must 

know the profile of the backscattering coefficient b(x, z) along 
the straight line x = 0 to reconstruct the solution in 
symmetrical sounding. It may be the case in which the 
atmospheric abnormally turbid region under study formed, for 
instance, due to an industrial emission of aerosol pollutant or 
gas, is situated to the right of the z axis, so that the optical 
conditions in the atmosphere outside this region may be 
described by a certain standard model.  

4. Three-beam scheme. In three–beam sounding each 
point within the region of space under study is sounded 
from three different directions n

i 
(i = 1, 2, 3), characterized 

by the polar angles ϕ
i 

(i = 1, 2, 3). Inverse problem is 

described by three partial differential equations of the 
form (4), which may be regarded as the system of linear 
algebraic equations  

Ay = g (21) 
 

in the unknowns  
 

y
1
 = ∂L(x, z)/∂x, y

2
 = ∂L(x, z)/∂z, y

3
 = α(x, z) (22) 

 

with the matrix 
 

A = 

⎝
⎜
⎛

⎠
⎟
⎞

 

sinϕ
1
  cosϕ

1
  –2

sinϕ
2
  cosϕ

2
  –2

sinϕ
3
  cosϕ

3
  –2

  (23) 

 

and the vector in the right side 
 

g = 
⎝
⎛

⎠
⎞∂G

1

∂n
1

 , 
∂G

2

∂n
2

 , 
∂G

3

∂n
3

′
. (24) 

 

By inverting algebraic system of equations (21), one can 
obtain the attenuation coefficient α(x, z) and logarithmic 
partial derivatives of the backscattering coefficient β(x, z). 
The obtained solutions have the simplest form for the 
symmetrical scheme of sounding, when the vectors n

1
 and n

2
 

are oriented symmetrically about the vector n
3
 directed 

toward the nadir (Fig. 1). In this case the polar angles are 
taken to be in the following form: ϕ

1
 = – ϕ

2
 = ϕ, ϕ

3
 = 0. It 

is easy to show that under these conditions the attenuation 
coefficient is given by the formula 
 

α(x, z) = 
1

4(1 – cosϕ)⎣
⎡

⎦
⎤2cosϕ 

∂G
3

∂n
3

 – 
⎝
⎛

⎠
⎞∂G

1

∂n
1

 + 
∂G

2

∂n
2

 . (25) 

 

As can be seen from Eq. (25), in three–beam sounding the 
attenuation coefficient α(x, z) is determined by linear 
combination of the logarithmic derivatives of lidar signals 
with respect to the directions of sounding.  

Substituting a(x, z) from the obtained equation (25) into 
the third equation of system (21), which involves only one 
partial derivative ZL/Zz for ϕ = 0 and on integrating, we 
obtain the following solution for the backscattering 
coefficient: 

 

β(x, z) = 

⎩
⎨
⎧

⎭
⎬
⎫S

3
(x, z)2

S
1
(x, z)S

2
(x, z) 

k

(S
1
(x, z)S

2
(x, z))1/2

T(x, z),(26) 

 

T(x, z) = exp 

⎩
⎨
⎧

⎭
⎬
⎫

–ksinϕ ⌡⌠
0

z

 
∂Ω(x, z′)

∂x
 dz′  , 

 

where k = 1/4 sin2(ϕ/2). It is obvious from comparison of 
solutions (18) and (20) and (25) for the symmetrical two-
beam and three–beam tomographic sounding problems, 
respectively, that in reconstruction of the spatial distribution 
of the attenuation coefficient α(x, z) the lidar signal 
processing can be considerably simplified by introducing the 
additional sounding channel in the direction n

3
. It is clear that 

this can be obtained at the cost of complication of the 
experimental scheme. The solution for the backscattering 
coefficient β(x, z) in both cases has analogous structure.  

Analysis of the obtained results shows, that the 
calculation of logarithmic derivatives of a lidar signal with 
respect to different directions is an important stage of 
constructing the solutions. Since the logarithmic derivative 
of a function remains unchanged when the function is 
multiplied by a constant in processing the lidar signals, this 
scheme does not require the absolute calibration of lidar 
signal for reconstruction the attenuation coefficient. In  
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addition, differentiation of functions measured experimentally 
is an improperly posed problem7 because of the errors in 
measurements. Therefore, in developing the applied methods 
of interpretation of lidar signals based on the obtained 
formulas, the regularization algorithms are needed to ensure 
the stability of the calculation of derivatives.  

5. Conclusion. The inverse problems of the airborne lidar 
tomographic sounding of the atmosphere have been formulated 
and the analytical solutions for the two–beam and three–
beam schemes have been obtained. In contrast to the 
traditional problems of laser sounding, in reconstructing the 
two–dimensional spatial distributions of the backscattering 
and attenuation coefficients it is not unnecessary to use the 
additional a priori information regarding the optical 
characteristics sought for or their spatial structure. Therefore, 
the methods of airborne tomographic lidar sounding are 
applicable first of all for optically dense media with high 
degree of uncertainty and variability of the lidar ratio. The 
regions with enhanced concentration of aerosol and absorbing 
gases, formed due to emission of industrial plants, fires and 
volcanic activity are the examples of such media. Subsequent 
investigations should be directed to the development of 
calculational algorithms for solving the inverse problems of 
lidar tomographic sounding on the basis of the analytical 
solutions obtained in the present paper taking into account the  

discrete character of real measurements. Finally, using the 
developed algorithms it is necessary to evaluate the spatial 
resolution and accuracy of the inverse problem solutions by 
the Monte Carlo methods and to elaborate recommendations 
for the optimal selection of the polar sounding angles for 
different optical conditions in the atmosphere.  
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