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The formula is analyzed for the horizontally inhomogeneous component of the 
brightness field of outgoing radiation above an isotropically reflecting surface. The 
dependence of this component of the radiation brightness upon the spatial variations of 
the surface albedo is shown to be nonlinear.  

 
Both the direct and inverse optical transfer operators of 

the atmosphere were constructed in Refs. 1–3 which related 
the two–dimensional albedo of a Lambertian underlying 
surface illuminated by incident solar radiation to the 
brightness of radiation reflected by the surface–atmosphere 
system. The theory of the optical transfer operators of the 
atmosphere continued to develop in rather complex models 
which accounted for the horizontal inhomogeneity of the 
atmosphere, for the radiation polarization, and for the 
anizotropy of reflection from the Earth's surface.4–6 Such a 
theory has been already completed for the case of isotropic 
nonuniform reflection from the underlying surface, and it can 
be applied to the systems of numerical processing of satellite 
images. Therefore, new results (see Refs. 7–14) obtained in 
this field are of particular interest.  

Let z be the vertical coordinate r = {x, y} be the vector 
of horizontal coordinates; s = {μ, s

⊥} be the unit vector of the 

direction μ = cosθ; s⊥= 1 – μ2⋅{cosϕ, sinϕ}; θ and ϕ be the 

zenith and the azimuth observation angles; z = 0 and z = h be 
the lower and upper boundaries of the atmosphere; Ω be the 
unit sphere, Ω

+
 and Ω

-

 be the upper and lower hemispheres; 

q(r) be the inhomogeneous surface albedo; q
–

 and q
∼
(r)

 = q(r) – q
–

 be the average albedo and its variation and, 
f ≡ f(s, s′), α(z), and σ(z) be the scattering phase function and 
the coefficients of attenuation and scattering of light in the 
atmosphere.  

On the basis of the model of a horizontally homogeneous 
atmosphere illuminated by the Sun and founded by the 
isotropically reflecting Lambertian surface, the brightness of 
the outgoing radiation has the form2,3:  
 

I = I
–

 + I
∼
 , (1) 

Here  
 

I
–

 = D + q
–

E
–
Ψ

0
 (2) 

 

is the average component of brightness, D is the brightness of 

the haze; E
–

 = (E
0
(1 – q

–
c
0
)-1; πE

0
 and Ψ

0
 are the illuminance 

of the Earth's surface and the norm of the optical spatial–

frequency characteristic of the atmosphere at q
–
 = 0; c

0 
is the 

spherical albedo of the atmospheric layer. The variation I
~
can 

be represented in the form:  
 

I
∼
 = ∑

k=1

∞

 Φk , (3) 

 

where the "orders of multiplicity of reflections" Φk are 

evaluated by recursion from the system of boundary–value 
problems 
 

⎩
⎨
⎧ 

 

LΦk = SΦk ; Φk⎟ z=0
s∈Ω+

 = 0 ; 

Φk⎟ z=h
s∈Ω-

 = q
–

RΦk + q(r)RΦk-1
  
, k ≥ 1 .

 (4) 

 

Here L = (s, ∇) + α(z) is the differential operator of 

radiative transfer; S: SΦk= σ(z) ⌡⌠
Ω

 Φk f ds is the integral 

operator of multiple scattering; R: RΦk= 
1
π ⌡⌠

Ω
+

Φ
∧

k⎟z=h μds is 

the reflection operator.  
The Fourier transform of the Eq. (3) may be 

represented in the form5,7  
 

I
∼∧
 = ∑

k=1

∞

 Φk = E
–

W(p) ∑
k=1

∞
 Q n–1 q

∼∧
(p)= E

–
W(p) ∑

k=0

∞
 Q n q

∼∧
(p) = 

 

= E
–

W(p) [E – Q]-1q
∼∧
(p) , (5) 

 

where W(p) = Ψ(p) [1 – q
–

C(p)]–1 ; Ψ(p) is the optical 
spatial–frequency characteristic of the atmosphere; 
p = {px, py} is the vector of spatial frequencies; 

q
∼∧
(p) = ⌡⌠

-∞

∞

 q(r)ei(p,r)dr is the Fourier spectrum of the albedo; 

E is the unit operator; Q is an operator acting upon a set of 
functions {g(p)} following the rule: 
 

Q g(p) = 
1

(2π)2⌡⌠
-∞

∞

 q
∼∧
(p – p′)H(p′) g(p′) dp′ ;  

 

H(p) = RW(p) = C(p) [1 – q
–

 C(p)]-1 ; C(p) = R Ψ(p). 
 

Analytically, the sum of series (3) can be written in the 
following way:  
 

I
∼
 = I

∼
l
 + I

~
n
 = 

E
–

(2π)2 ⌡⌠
-∞

∞

 W(p)q
∼∧
(p) e–i(p,r)dp + 
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+ E
–
∑
k=2

∞

 
1

(2π)2k ⌡⌠
-∞

∞

 ⋅ ⋅ ⋅ ⌡⌠
-∞

∞

 W(p)H
–

(p
1
) ⋅ ⋅ ⋅ H

–
(pk-1) × 

 

× q
∼∧
(p – p

1
)q
∼∧
(p

1
 – p

2
))⋅ ⋅ ⋅ q

∼∧
(pk-2 – pk-1) × 

 

× q
∼∧
(pk-1) e

-i(p,r)dp
1
⋅ ⋅ ⋅ dpk-1dp , (6) 

 

where I
~

l
, I

~

n
 are the linear and nonlinear components of 

variations of the albedo.  
Similar relations hold for the problem that takes into 

account the state of polarization.5 We have for the Stokes 
vector of the outgoing radiation  

 

J = J
–

 + J
~
 . (7) 

 

Here 
 

J
–

 = D + q
–

E
–
Ψ

0
 (8) 

 

is the "average" component of the Stokes vector; D is the 
vector "haze"; Ψ

0
 is the norm of the optical spatial–

frequency vector characteristic of the atmosphere at q
–

 = 0.  

The variation J
~
 is given by the series  

 

J
~
 = ∑

k=1

∞

 Φk , (9) 

 

where Φk satisfies the system of recursive boundary–value 

problems 
 

⎩
⎨
⎧ 

 

LΦk = SΦk ; Φk⎟ z=0
s∈Ω+

 = 0 ;  

Φk⎟ z=h
s∈Ω-

 =[ ] q
–

RΦk + q
~
(r)RΦk–1

l
 (10) 

 

S: S Φk = σ(z) ⌡⌠
Ω

 P Φkds is the matrix operator of multiple 

scattering; P is the angular matrix; l = {1, 0, 0, 0}.  
Following the above–indicated scheme, we obtain5,8:  

 

J
∼∧
 = E

–
W(p)[E – Q]–1q

∼∧
(p) , (11) 

 

where W(p) = Ψ(p)[1 – q
–

C
–

(p)]–1; Ψ(p) is the optical 
spatial–frequency vector characteristic of the atmosphere; E is 
the unit matrix operator; Q is an operator which acts upon a 
set of vector functions {g(p}} = {g(p)l} following the rule  
 

Q g(p) = 
1

(2π)2⌡⌠
–∞

∞

 q
∼∧
(p – p′)H

–
(p′) g(p′) dp′ ;  

 

H
–

(p) = C
–

(p) [1 – q
–

C
–

(p)]–1;  C
–

(p) = R Ψ
1
(p);  

 

Ψ
1
(p) is the first component of the vector function Ψ(p). 

Analytically, the sum of the series (9) can be written as  
 

J
~
 = J

~
l
 + J

~
n
 = 

E
–

(2π)2 ⌡⌠
-∞

∞

 W(p)q
∼∧
(p) e–i(p,r)dp + 

 

+ E
–
∑
k=2

∞

 
1

(2π)2k ⌡⌠
–∞

∞

 ⋅ ⋅ ⋅ ⌡⌠
-∞

∞

 W(p)H
–

(p
1
)⋅ ⋅ ⋅ H

–
(pk-1) × 

 

× q
∼∧
(p – p

1
)q
∼∧
(p

1
 – p

2
))⋅ ⋅ ⋅ q

∼∧
(p

k–2
 – p

k–1
) × 

 

× q
∼∧
(pk-1) e

–i(p,r)

dp
1
⋅ ⋅ ⋅ dp

k-1
dp , (12) 

 

where J
–

l
, J

~

n
 are the components of the vector J

~
, linear and 

nonlinear for variations of the albedo.  
On the basis of Eq. (5), the authors of Ref. 7 

concluded that  
 

I
~
 = 

E
–

(2π)2 

⌡
⎮
⎮
⌠

–∞

∞

W(p)q
∼∧
(p) e-l(p,r)dp

1 – 
1

(2π)2 ⌡
⌠
–∞

∞

q
∼∧
(p – p′)H(p′)dp′

 . (13) 

 

According to Ref. 8, Eq. (11) yields  
 

J
~
 = 

E
–

(2π)2 

⌡
⎮
⎮
⌠

-∞

∞

W(p)q
∼∧
(p) e-i(p,r)dp

1 – 
1

(2π)2 ⌡
⌠

-∞

∞

q
∼∧
(p – p

1
)H(p′)dp′

 . (14) 

 

Equations (13) and (14) represent, in closed form, the sums 
of the corresponding series (5) and (11). Taking into 
account the identity of formulas (13) and (14), a scalar 
problem may be considered, by way of example, in our 
further study.  

We shall now expand the integral in the right side of 
Eq. (13) into a series  
 

I
~
 = I

~

l
 + I

~

n
 = 

E
–

(2π)2 ⌡
⌠

-∞

∞

W(p)q
∼∧
(p) e-i(p,r) × 

 

× 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

1 + ∑
k=1

∞

 
⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

1

(2π)2 ⌡
⌠

-∞

∞

q
∼∧
(p - p′)′H(p′)dp′

k

dp . (15) 

 

It was demonstrated in Ref. 15 for the actual values of the 
atmospheric optical parameters and surface albedo that the 

contribution of the component I
~

n
 to the radiation brightness I is 

about 1%. The contribution may increase to a few per cent for 

large values of q– and max⏐q~(r)⏐ and for the slightly elongated 
scattering phase functions. The difficulty of calculating the 

component I
~

n
 from Eq. (6), on the one hand, and its small 

contribution to I, on the other, makes one to neglect the value 

I
~

n
 in practical applications. Meanwhile, formula (13) makes it 

possible to take into account the nonlinear component in a 
simple way and to eliminate the problem of its preliminary  
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estimation. However, attentive examination of this formula 
shows that it was ill–found. When going over from Eq. (5) 
to Eq. (13), an error of identifying the sum of the operator 
series with the sum of a geometric progression was made. 
Let us compare Eqs. (6) and (15). The linear terms in both 

of them coincide I
∼

l
 = 

E
–

(2π)2 ⌡⌠
-∞

∞

 W(p)q
∼∧
(p) e-i(p,r)dp while the 

nonlinear terms differ: the orders of multiplicity of 
perturbation in Eq. 6) represent the convolution integrals 
while in Eq. (15) the corresponding terms have the form 
 

⌡⌠

-∞

∞

W(p)q
∼∧
(p) e-i(p,r)

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

1

(2π)2⌡
⌠

-∞

∞

q
∼∧
(p – p′)H(p′)dp′

k

dp .  

 

The inequality of the right sides of Eqs. (6) and (15) may 
also be demonstrated by the direct test. It is sufficient to 
consider a variation of the albedo in the form of a simple 
harmonic  

 

q
∼
(r) = Δq⋅cos(ω, r) , (16) 

 

since any function q
∼
(r) can be presented in the form of Fourier 

integral. Substituting Eq. (16) into Eq. (13) and using the 

equalities W(–ω) = W*(ω), C(–ω) = C*(ω), and  

H(–ω) = H*(ω), where * denotes the complex conjugation 

and q
∼
(p) = Δq ⌡⌠

-∞

∞

 cos(ω, r) ei(p, r)dp =Δq [δ(p – ω) + δ(p + ω)], 

we obtain  
 

I
∼
 = 

ΔqE
–

2
⎩
⎨
⎧ W(–ω)ei(x,r)

1 – 0.5Δq[H(–2ω) + H(0)]
 + 

 

+ 
W(ω)e-i(ω,r)

1 – 0.5Δq[H(0) + H(2ω)] ⎭
⎬
⎫ 

 
 = 

 

= ΔqE
–

Re
⎩
⎨
⎧

⎭
⎬
⎫W(ω)e-i(ω,r)

1 – 0.5Δq[H(0) + H(2ω)]
 . (17) 

 

It follows from Eq. (17) that I
∼
 oscillates with the 

frequency ω. This result contradicts the physical meaning of 
the problem: the solution of the direct problem should be 

nonlinear in q
∼
(r) (see formula (6)) due to the photons 

repeatedly reflected from the underlying surface, and must 
contain higher harmonics cos(nω, r), sin(nω, r ). We can make 
sure of the latter statement by substituting Eq. (16) into 
Eq. (6)  

 

I
∼
 = ΔqE

–
Re

⎩
⎨
⎧ 

 
W(ω)e-i(ω,r) + 

 

+ ( )Δq
2  H(ω) [W(2ω) e-2i(ω,r) + W(0)] + 

 

+ ( )Δq
2

2

[W(3ω) H(–2ω) H(–ω) e-3i(ω,r) + 

 

+ W(ω) H(–ω) [H(–2ω) + H(0)] e-i(ω,r) + 
 

+ W(–ω) H(–ω)H(0) ei(ω,r)] + O( )Δq
2

3

⎭
⎬
⎫ 

 
 . (18) 

 

As expected, the right sides of Eq. (6) and Eq. (13) are 
identical as ⏐ω⏐ → 0:  
 

I
∼

⎟⎟ ω⎟→0
 = ΔqE

–
W(0)[1 – ΔqH(0)]–1 .  

 

As ⏐ω⏐ → ∞ (z = 0), we obtain from Eqs. (18) and (17), 
respectively  
 

I
∼

n
 = (I

~
 – I

~

l
)⎟⎟ ω⎟→∞

 = 0 
 

and 
 

I
∼

n
= (I

∼
 – I

∼

l
)⎟⎟ ω⎟→∞

 = 
0.5ΔqH(0)

1 – 0.5ΔqH(0)
 ΔqE

–
 e

-υ0/⎟ ν⎟-i(ω,r)
 .  

 

Hence, it follows that the relative error in calculating I
∼

n
 from 

formula (13) γ = 
I
∼

n
⏐

(18)
–I

∼

n
⏐

(17)

I
∼

n
⏐

(18)

 increases without limit with 

increase of ω.  
Similar conclusions are true if we take account of the 

polarization state. Further inaccurate constructions entail 
formulas (13) and (14) when run down Refs. 7–14. For 
example, a familiar relation enters in the denominator of the 
basic expression for the Stokes vector in Ref. 14 
(formula (8), p. 405)  
 

t(p) ≡ 1 – 
1

(2π)2⌡⌠
-∞

∞

 q
∼∧
(p′)H(p –p′)dp′ . 

 

Note in conclusion that an account of the horizontal 
nonuniformity of the albedo leads to the change in the 

average brightness I
–

. The constant term in Eq. (18) 
indicates to this result  
 

ΔqE
–

Re
⎣
⎢
⎡ 

 

Δq
2  H(ω) H(0) +   

 

+ ( )Δq
2

2

W(–ω)H(–ω)H(0) + O( )Δq
2

3

⎦
⎥
⎤ 

 
 .  

 

This term may be neglected in practical calculations.  
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