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The dependence of resonance parameters of an H2O molecule on the vibrational 

quantum number V2 , associated with the deformation vibration of high amplitude, is 

numerically studied. A significant change in the inverse inertia tensor µzz due to this 

vibration and its anharmonicity gives rise to the new types of resonances for which the 
ordinary conditions of proximity of the frequencies ω1 ≈ ω3 ≈ 2ω2 are violated. 

 
An H2O molecule belongs to the class of nonrigid 

molecules. Among the problems, which arise as a result of 
nonrigidity in processing of the vibrational–rotational 
spectrum of H2O, let us note the following: first, a number of 

the centrifugal constants (CC) of the effective rotational 
Hamiltonian Hrot employed in processing depends anomalously 

strongly on the quantum number V2 associated with the 

deformation (bending) vibration; second, the exponential 
representation of Hrot in terms of the operator of the angular 

momentum J z
 2 diverges (the z axis is the axis of linearization 

of the molecule). A theoretical explanation of the anomalously 
strong dependence of the CC on V2 was given in Refs. 1–3. 

The second problem was discussed in Refs. 4–6 and in the 
literature cited there. The polyads of the resonating 
vibrational states in an H2O molecule are formed according to 

the rule 2V1 + 2V3 + V2 = p = 0, 1, 2, ..., which follows 

from the condition 
 

ω1 ≈ ω3 ≈ 2ω2 . (1) 
 

The resonance interaction between the levels of different 
polyads was noted in Refs. 7–8, while specific processing of 
the first decade of H2O (p = 6) was performed in Ref. 9 

with an account of the interaction with the vibrational state 
(070), which formally, from the viewpoint of condition (1), 
does not belong to this decade. 

The authors of Ref. 9 called this resonance HEL–
resonance and explained it by a strong centrifugal distortion 
associated with the excitation of the quantum number V2. 

In this paper, we present the calculated results of the 
vibrational dependence (on V2) of different resonance 

parameters (the Fermi, the Coriolis, and other parameters) 
of an H2O molecule and show an existence of different 

resonances, for which condition (1) is violated and which 
are primarily caused by an anharmonicity of the potential 
function of the molecule as well as by the strong 
dependence of the inverse inertia tensor μzz on the 

coordinate of the bending vibration ρ. 
 

THE MODEL OF THE FIELD OF FORCE 
 
The calculations performed in the paper were based on 

the model of the nonrigid molecule.10 The technique for 
calculating the spectroscopic parameters of this model was 
discussed in Refs. 1 and 3 (for a model of the semirigid 
molecule the formulas for the resonance parameters can be  

found in Refs. 11–13). In numerical calculations we 

employed the anharmonic wave functions ψn(ρ) (n } V2) 
obtained by numerical integration of Schroedinger's 
equation10,14: 
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V0(ρ) Ψn(ρ) = EnΨn(ρ) , (2) 

 

with the prescribed potential function V0(ρ). The 

Hamiltonian H 0
 b (together with the Hamiltonian H0

 Sm⋅V, 

which describes the harmonic vibrations of low amplitude) 
is a zero approximation to the Hamiltonian H = H0 + W 

when the latter is transformed into the effective 
Hamiltonian for the polyad of resonating vibrational states. 
H0 and the perturbation W are derived from H by 

expanding the inverse inertia tensor 
 

1
2 μab(ρ, qi) = B

α
(ρ)δ

αβ
 + ∑

i

 
Bi

 αβ(ρ) qi +  

 

+ ∑
ij

B ij
 αβ(ρ) qi qj + ... = {μ0} + {μ1} + {μ2} + ... , (3) 

 

where 
 

B ij
 αβ = 3/8 ∑

γ

(B i
 αγ B j

 βγ + B i
 βγ B j

 αγ)/B
γ
 , 

 

i, j = 1, 3;   α, β, γ = x, y, z, ρ , and the potential function 
 

V(ρ, qi) = V0(ρ) + ∑
i

Ki(ρ)qi + ∑
i,j

Kij(ρ) qi qj +  

 

+ ∑
ijl

Kijl(ρ) qi qj ql + ... = {V0} + {V1} + {V2} + {V3} + ... (4) 

 

into series in terms of the coordinates qi, which describe the 

vibrations of low amplitude. For the function V0(ρ), we 

have chosen two approximations 
 

V0(ρ) = f
αα

 ρ2 + H(1 + f
αα

 ρe
2/H)2/(1 + Hρ2/f

αα
 ρe

4) (5) 
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and 
 

V0(ρ) = f
αα

 ρ2 + f
ααα

 ρ3 + f
αααα

 ρ4 . (6) 
 

The vibrational energy levels with these potentials 
calculated from Eq. (2) are given in Table I. 

 

TABLE I. The frequencies of the vibrational bands of H2O 

calculated from Eq. (2) and measured experimentally in 
Refs. 10 and 15 (cm–1)*.  
 

Band
 
Experiment (5)

 
(6)

 
Band

 
(5)

 
(6)

 

ν2 
1594.8 1594.8 1593.7 5 ν2 

7526.6 7536.6 

2 ν2 
3151.5 3153.1 3151.3 6 ν2 

8828.4 8859.6 

3 ν2 
4666.3 4668.4 4667.4 7 ν2 

10032.4 10124.4

4 ν2 
6134.0 6131.4 6134.6 – – – 

 

*The parameters H = 10960.978 cm–1, 
F

αα
 = 12857.902 cm–1, and ρe = 1.82083 rad were used for 

calculation of the potential V0(ρ) from Eq. (5). The 

parameters F
αα

 = 16855.74 cm–1, F
ααα

 = –7522.05 cm–1, and 

F
αααα

 = –273.85 cm–1 were used for calculation of the 

potential V0(ρ) from Eq. (6). 
 

For the functions Fj(ρ), which determine the function  
 

K1(ρ) = (2πc)–1(hcω1(ρ))–1/2∑
j

 Fj (ρ) Lj
i (ρ) (7) 

 

Li
j (r) is the linear coefficient of conversion of the natural 

coordinates to the normal, two approximations also wmployed, 
one of them was given in Refs. 14 and 16, while the second 
approximation 

 

Fj (ρ)/hc = ∑
i=1

4

f ij(cosρe – cosρ)i (8) 

 

was presented in Ref. 17. The functions Kij (ρ), Kijl (ρ), ... 
were calculated based on a scheme described in Refs. 14 and 
16. The shape of the functions B

a
(ρ), B i

 ab(r), ... from the 

kinetic part of the Hamiltonian can be found in Refs. 1 and 3. 
Let us now consider the dependence of the specific resonance 
parameters on the quantum number n ≡ V2 employing for 

them the ordinary terminology. 
 

THE CORIOLIS RESONANCE OF THE FIRST ORDER 

 
The Coriolis resonance of the first order arises as a 

consequence of the condition ω1 ≈ ω3 and for each value of 

the quantum number n ≡ V2 is described by the operator  
 

F13(n) = {F13
 x (n) (iJx) + F13

 yz(n)(Jy Jz + Jz Jy) + ... } ×  
 

× |n〉 〈n|a1
+a3 + h. c. , (9) 

 

in which h. c. denotes the Hermitian conjugate, 
 

F13
 x (n) = 〈n|Bx ζ13

 x |nñ(ω1 + ω3)(ω1ω3)
–1/2 ; (10) 

 

F yz
13(n) = B yz

13  (n) – 

3
2 K133(n) B3

 yz
 (n) 

⎩
⎨
⎧

⎭
⎬
⎫ω3

ω1(2ω3 – ω1)
 + 

1
ω3

, (10a) 

 

and ai
+, aj (i, j = 1, 3) are the creation and annihilation 

operators of the vibrational quanta,5 which correspond to the 
vibrations of low amplitude. In formula (10), the following 
notations were used: f(n) = f(nn), f(nm) = <n⏐f(ρ)⏐m>, and 
ωi = Kii(ρe). Taking the values of the functions Bx(ρ), , ... at 

the point ρe out from inside the integrals, we obtain the same 

relations for these resonance parameter as for the model of a 
semirigid molecule independent of V2 (see Refs. 11–13). The 

calculations of F13
x (n) and F13

 yz(n) performed with different 

fields of force showed that these parameters can strongly 
depend on V2. The typical calculated behavior of these 

parameters is shown in Fig. 1 (the contributions of the 
reduction of the effective Hamiltonian19 to the resonance 
parameters are ignored in this paper). The asterisk denote the 
values of the parameters obtained by processing of the 
experimental data (the change of a sign of the parameters of 
the operators for the Coriolis resonances has no effect on the 
reconstruction of the parameters).20, 21 
 

 
 

FIG. 1. The calculated dependence of the parameters F13
x (n) 

(curve 1) and F13
 yz(n) (curve 2) of the Coriolis resonance of 

the first order. V0(ρ) calculated from Eq. (5) and the field 

of force taken from Ref. 18 were used.  
 

THE CORIOLIS RESONANCES  

OF THE SECOND ORDER  
 

In the model of a semirigid molecule the Coriolis 
resonances of the second order arise as a consequence of the 
condition ω3 ≈ 2ω2. In the model of a nonrigid molecule 

they are described by the operator  
 

F3(n, m) = {F3
 x(n, m) (iJx) + F3

 yz(n, m)(Jy Jz + Jz Jy) ...} × 
 

× |n> <m|a3
+ + h. c. , (11) 

 

which makes it possible to describe all feasible resonances, 
which arise as a consequence of the condition 
ω3 + Ωn0 ≈ Ωm0

 (Ωmn = Em – En). It is obvious that the 

condition ω3 ≈ 2ω2 is a particular case of this condition for 

m = n + 2. The values of the first resonance parameter  
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F3
x(n, m) = – 2

⎩
⎨
⎧ 

 
T3

x(nm) + 
1
2∑

s

 
*
K33(ns) T3

 x(sm) ×   

 

× [(Ωsm + ω3)
–1 + Ωsn

 –1]
⎭
⎬
⎫ 

 
  (12) 

 

were calculated from formula (11), where 
T3

 x(nm) = <Ψn(ρ)⏐B3
 x(ρ)⏐∂Ψm(ρ)/∂ρ>, while the asterisk 

adjacent to Σ denotes that the terms with resonance 

denominators are eliminated from the sum. The calculated 
ehavior of the parameters F 3

 x(n, n + 2) and F3
 x(n, n + 3) is 

shown in Fig. 2.  

 

 
 

FIG. 2. The calculated dependence of the parameters 
F3

 x(n, n + 2) (curve 1) and F3
 x(n, n + 3) (curve 2) of the 

Coriolis resonance of the second order. The field of force 
was used according to Ref. 18 and V0(ρ) was calculated 

from Eq. (5). The dashed line indicates the results of 
calculation based on the model of semirigid molecule: 

F3
 x(V2 , V2 + 2) = const⋅ (V2 + 1)(V2 + 2). Curves 3 and 

4 shows the results of calculations with the field of forces 
according to Ref. 17.  

 

The figure shows that for certain values of n and p 
⏐F3

 x(n, n + 2)⏐∼⏐F3
 x(p, p + 3)⏐ and, moreover, for definite n, 

κc(n, n + 2) ∼ κc(n, n + 3);  

κc(n, m = x)(n, m)⏐/[(ω3 + Ωn0) – Ωm0] =  

= x)(n, m)⏐/(ω3 + Ωmn). This means that two vibrational 

states (kn1) and (km0) (m = n + 2, n + 3, k is the arbitrary 

parameter) must be joined into a single polyad. In our 

calculations such a situation realizes for n = 2 and, in 

particular, the state (021) must be considered simultaneously 

with the states (040) and (050). It is evident from formula 

(12) that such resonances are described by the contributions of 
the kinetic (T3

 x) and potential parts of the Hamiltonian. 

 

THE DARLING–DENNISON RESONANCE 

 
The Coriolis resonances of the second order arises as a 

consequence of the condition 2ω1 ≈ 2ω3 and is described by 

the operator  
 

F13
 D(n) = F13

 0 (n) a1
+a1

+a3a3 + h. c. , (13) 

 
in which 

 

F13
 (0)(n) = 

1
2 

⎩
⎨
⎧

3K1133(n)

 

–

 

3K133
 2 (n)

w1
 + 

 

+ 
3
2 

K111(n)K133(n)

ω1 ⎭
⎬
⎫ 

–

 

1
8
∑

s

*
 
K11(ns)K33(sn)

Ωsn
 . (14) 

 
In the calculations carried out as well as in the model of a 
semirigid molecule, F13

 (0) is virtually independent of n. 

 
THE FERMI RESONANCE 

 
In the model of a semirigid molecule, the Fermi 

resonance arises as a consequence of the condition ω1 ≈ 2ω2. 

In general, it is described by the operator 
 

F1(n, m) = 

⎩
⎨
⎧

⎭
⎬
⎫

F1
 (0)(n, m)

 

+

 
∑

α=xyz

 F
 
1α

(n, m) J
α
 2 + ...  ×  

 

× |n> <m |a1
+ + h. c. . (15) 

 

The case ω1 ≈ 2ω2 is realized when m = n + 2. In formula (15) 
 

F1
 (0)(n, m) = 

1

2
 K
~

1(nm) = 

 

= 
1

2⎩
⎨
⎧

⎭
⎬
⎫

K1(nm) – <Ψn|B1
 qq(ρ)| 

∂2Ψm

∂ρ2  >  . (16) 

 

The relation for F1α
 can be symbolically written down in the 

form  
 

{F1α
} = {μ1} + {μ0 × V1} + {μ1 × V2} + {μ2 × V1} + 

 

+ {T(cor) × μ1
 ρ} + {μ1

 ρ × μ1
 ρ} + 

 

+ {V1 × μ1 × V3} + {V1 × V1 × μ1} + {V2 × μ0 × V1} + 
 

+ {T(cor) × V2 × μ1
 ρ} + {μ1

 ρ × μ1
 ρ} × {V1 + V3} +  

 

+ {T(cor) × T(cor) × V1} , (17) 

 
in which μ i

 ρ means that one of the indices α and β in {μi} 

assumes the value ρ, while T(cor) is the term of W, which 
includes the Coriolis constant.11 Of all parameters 
F1α

(α = x, y, z), F1z is the largest in magnitude and most 

sensitive to the variations of the quantum number V2. The 

numerical calculations showed that in order to determine F1z 

it is necessary to retain only two terms in formula (17). Then,  
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F1z(n, m) = F1z
 (nm)(cent) + F1z

 (nm)(a~) , (18) 
 

F1z
 (nm)(cent) = 

1

2
 B1

 zz(nm) ; 

 

where 
 

F1z
 (nm)(a~) = 

1

2 2∑
s

*
 {Bz(ns)K

~
1(sm) ×  

 

× [(Ωns + ω1)
–1 – Ωsm

–1] . (19) 

 
The calculated behavior of the parameters F1

 (0)(n, m) and 

F1k(n, m) = F1z(n, m) – (F1x(n, m) + F1y(n, m))/2 is shown 

in Figs. 3 and 4.  
The estimate of the quantity 

κF(n, m) = ⏐F1k(n, m) /( ω1 – Ωmn) shows that a number 

of states with ν1 + nν2 and mν2 with m = n + 2 and n = 3 

and even with m = n + 4 for large n should be joined into a 
single polyad (in particular, the state (130) should be 
considered simultaneously with the states (050) and (060), 
the state (140) ––with (060) and (070), etc.). The values 
of two contributions calculated from formula (18) to the 
parameter F1z are given in Table II. 

 
TABLE II. The contributions, calculated from formula (18), 
to the parameter F1z (nm) of the Fermi resonance (cm–1).* 

 

n  m  F1z
 (cent).10 F1z(a

~).10 F1z
 .10 

0 2 –1.9 2.5 0.6 
1 3 –4.0 7.0 3.0 
1 4 –1.3 7.8 6.5 
2 5 –3.0 21.0 18.0 

 
*Formula (15) was used to calculate V0(ρ) and the 

field of force was assigned according to Ref. 18. 
 

 
 

FIG. 3. The calculated values of the parameters 
F1

 (0)(n, n + 2): 1) the calculation with the field of force 

according to Ref. 18; 2) calculation with the field of force 
according to Ref. 17; 3) parameter F1

 (0)(n, n + 3) with the 

field of force for the Fermi resonance according to 
Ref. 18. The asterisks denote the experimental data 
according to Refs. 20 and 21. 

 
 

FIG. 4. The calculated dependence of the parameters 
F1k(n, n + 2); 1) calculation with the field of force 

according to Ref. 18; 2) calculation with the field of the 
force according to Ref. 17; 3) the F1k(n, n + 3) with the 

field of force according to Ref. 18 vs the quantum number 
n = V2 for the Fermi resonance.  

 

It can be seen from the table that these contributions 
for small n are approximately identical and have the 

opposite signs. At large n, the contribution of F1z(a
~) 

predominates. It is interesting to note the following. If the 

Hamiltonian H0 = H0 + B
~

z(ρ)J zn
2 (see Ref. 4) is taken as a 

zero-order approximation of H0, F1k will be described by 

the contribution F1k(cent). In so doing, the calculated 

values of F1k(0, 2) and F1k(1, 3) approximately agree with 

the experimental values of F (see Refs. 17 and 18). 
 

THE FERMI RESONANCE OF THE FORTH ORDER 

 
In the model of a semirigid molecule the Fermi resonance 

of the forth order arises as a consequence of the condition 
2ω1 ≈ 4ω3. In the model of an nonrigid molecule it is described 

by the operator  
 

F11(n, m) = {F11
 (0)(n, m) + ∑

α=xyz

 F11α
(n, m) J

α
 2 + ...} ×  

 

× |n〉 〈m|a1
+a1

+ + h. c. , (20) 
 

in which 
 

F11
 (0)(n, m) = 

1
4 K11(n, m) , (21) 

 

while F11a can be represented by the sum of three terms 

 

{F11α
} = {μ2} + {μ0 × V2} + {μ1 × V1} =  

 

= {F11α
(cent)} + {F11α

(h)} + {F11α
(a~)} . (22) 

 
The specific form of these terms is as follows:  
 

F11α
 (nm)(cent) = 3/8 B 11

 αα(nm) ;  (23) 
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F11α
 (nm)(h) = –1/8∑

s

*
 {B

α
(ns) K11(sm) +  

 

+ K11(ns) B
α
(sm)}(Ωsn

–1 + Ωsm
–1) ; (23a) 

 

F11α
 (nm)(a~) = –1/4∑

s

*
 {K

~
1(ns) B1

 αα(sm) +  

 

+ B1
αα(ns)K

~
1(sm)} [(Ωsn – ω1)

–1 + (Ωsm + ω1)
–1] . (23b) 

 

In Table III, all contributions to the parameter 
F11z(n, n + 5) for n = 0, 1, 2 and, for comparison, to 

F11z(1, 7) are written down. The behavior of the parameters 

F11k(n, m) for different n and m follows the behavior of the 

parameters F1k(n, m) shown in Fig. 4.  

 
TABLE III. Values of contributions of terms of Eq. (22) 
to the parameter F11z(nm) of the Fermi resonance of the 

forth order (cm–1)*.  
 

n  m  F11z
 (cent) F11z(h

 ) F11z(a
~) F11z

 
 

0 5 4.7E–4 4.7E–4 –1.5E–2 –1.4E–2
1 6 2.5E–3 4.1E–3 –1.1E–1 –1.0E–1
2 7 1.3E–2 2.9E–2 –8.8E–1 –8.4E–1
1 7 7.8E–3 4.2E–3  7.0E–2  7.6E–2 

 
*The value of V0(ρ) given by Eq. (6) and the field of 

force according to Ref. 18 were used.  
 
These results were obtained with the functions V0(ρ) 

given by Eq. (6) and K1(ρ) given by Eq. (7). The estimate 

κFF(n, m) = ⏐F11(nm)⏐/( 2ω1 – Ωmn) shows that the state 

2ν1 + nν2 (for arbitrary ν3) should be joined into a single 

polyad with the state mν2 starting from n = 1 and m = n + 4, 

n + 5 and in some cases to m = n + 6. The new resonance 
described in Ref. 9 arises in the case under consideration for 
n = 2 and m = n + 5. Table III shows that the contributions 

of the terms F11z(h) and F11za
~ associated with the 

anharmonicity of the potential function V(ρ, q) given by 
formula (4) and with the expansion of μzz given by Eq. (3), to 

the parameter F11z(n, n + 5) predominate. 

 
CONCLUSION 

 
The results of calculations showed that the effects of 

nonrigidity in an H2O molecule violates the rule of formation 

of the polyads of resonating vibrational states based on 
Eq. (1). Thus, n–fold excitation of the quantum number 
V2(n ≥ 1) makes it impossible to strictly separate one polyad 

from another owing to the resonance interaction of the state  

(V1, nV2, V3) with the state (V′1, mV2, V′3) when m ≠ n + 2. 

The matrix coefficients, which relate these states, just as for 
the ordinary Fermi and Coriolis resonances, are formed both 
by the terms of the kinetic part of the Hamiltonian and by the 
terms of the expansion of the potential function of the 
molecule. In addition, the values of these matrix coefficients 
increases sharply with increase of the quantum number V2. 

In conclusion, we should like to acknowledge 
O.V. Naumenko and Vl.G. Tyuterev for fruitful discussions of 
the paper. 

 

REFERENCES 

 
1. V.I. Starikov, B.N. Makhancheev, and Vl.G. Tyuterev, in: 
Spectroscopy of Atmospheric Gases (Nauka, Novosibirsk, 
1982), pp. 34–54.  
2. V.I. Starikov, B.N. Makhancheev, and Vl.G. Tyuterev, J. 
Phys. Lett. 45, L–11–L–15 (1984).  
3. V.I. Starikov and Vl.G. Tyuterev, J. Mol. Spectr. 95, 288–
296 (1982).  
4. Vl.G. Tyuterev, V.I. Starikov, and V.I. Tolmachev, Dokl. 
Akad. Nauk SSSR 297, 345–349 (1987).  
5. Yu.S. Makushkin and Vl.G. Tyuterev, Perturbation 
Methods and Effective Hamiltonians in Molecular 
Spectroscopy (Nauka, Novosibirsk, 1984), 214 pp.  
6. O.L. Polynsky, J. Mol. Spectr. 112, 79–87 (1985).  
7. J.M. Flaud, C. Camy–Peyret, K.N. Rao, et al., J. Mol. 
Spectr. 75, 339 (1979). 
8. J.Y. Mandin, J.P. Chevilard, J.M. Flaud, and C. Camy–
Peyret, Can. J. Phys. 66, 997–1011 (1988).  
9. A.D. Bykov, O.V. Naumenko, and L.N. Sinitsa, Opt. Atm. 
3, No. 10, 1014 (1990). 
10. J.T. Houger, P.R. Bunker, and J.W.G. Johns, J. Mol. 
Spectr. 34, 136–172 (1970).  
11. V.I. Perevalov and Vl.G. Tyuterev, Opt. Spektrosk. 51, 
640–647 (1981).  
12. V.I. Perevalov and Vl.G. Tyuterev, Centrifugal 
Distortions in Assymmetric–Top Molecules with Random 
Resonances, Institute of Atmospheric Optics, Preprint No. 30, 
Tomsk, 1979, 65 pp.  
13. A.D. Bykov, Yu.S. Makushkin, and O.N. Ulennikov, 
Vibrational–Rotational Spectroscopy of Water Vapor 
(Nauka, Novosibirsk, 1989), 296 pp.  
14. A.R. Hoy and P.R. Bunker, J. Mol. Spectr. 52, 439–456 
(1974).  
15. C. Camy–Peyret, J.M. Flaud, and J.P. Maillard, J. Phys. 
Lett. 41, L–23–L–26 (1980).  
16. P. Jensen and P.R. Bunker, J. Mol. Spectr. 99, 348–356 

(1983). 
17. P. Jensen, J. Mol. Spectr. 133, 438–460 (1989).  
18. A.R. Hoy, J.M. Mills, and G. Strey, Mol. Phys. 24, 
1265–1290 (1972).  
19. V.I. Perevalov and Vl.G. Tyuterev, Opt. Spektrosk. 52, 
644–650 (1982).  
20. J.M. Flaud and C. Camy–Peyret, J. Mol. Spectr. 51, 142–
150 (1974).  
21. C. Camy–Peyret and J.M. Flaud, J. Mol. Spectr. 59, 
327–332 (1976).  
 

 


