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Inadequacy of the linear theory of the multichannel method (MCM) of the IR 
measurements of the temperature of the ocean surface (TOS) through the 
atmosphere is demonstrated. The four–channel parameterization of the IR 
measurements of the TOS is obtained on the basis of a quadratic approximation of 
the atmospheric transmission function entering in the radiative transfer equation, 
from the two spectral measurements at two zenith angles. Different two–channel 
reductions of this parameterization are tested based on the in situ measurements of 
the TOS and the NOAA–10/AVHRR data obtained in the spectral regions near 3.7 
and 10.8 µm. It is concluded that, in order to determine the TOS accurately, the 
angular IR measurements (or at least a synoptic adaptation of the angular 
parameter) are needed.  

 

The multichannel method (MCM) of determining 
temperature of the ocean surface (TOS) in the 
atmospheric transparency windows (in the spectral 
regions 3.5–4.0 and 10–12 μm) employs either spectral or 
angular differences in order to take into account the 
distorting effect of the atmosphere.1 Its two–spectral 
version is the most widespread, since the available 
information was taken from the linearly scanning IR 
radiometers of the AVHRR type, which are not capable, 
as assumed, to use the angular differences. However, in 
this case in order to provide an acceptable accuracy (of 
the order of 0.5–0.7 K), one had to employ only the data 
obtained at zenith angles ϑ < 45° (see Ref. 2); this fact 
significantly limits the body of the useful information. 
For example, in the GAC format (global atmospheric 
viewing with spatial resolition 4×4 km2) ~40% of the 
measurements were rejected. But even with such a 
limitation, an error in determining the TOS remained 
large (greater than 1°C according to Ref. 3) under 
complicated meteorological conditions (especially in 
tropics) and, which is the most important, it had a 
tendency to grow with increase of zenith angle.  

The last fact cannot be explained from the 
standpoint of the existing MCM theory, since after two–
spectral correction the angular dependence of the 
retrieved TOS must be absent. Recently spectral and 
angular algorithms4-7 have been proposed for determining 
the TOS using the additional terms of the form β(secϑ – 1) or 
γ ΔT(secϑ – 1), where β and γ are the a priori fixed 
parameters while ΔT = T

1
 – T

2
 is the difference between 

the radiative temperatures in the channels, in order to 
account for this effect. All of the proposed spectral and 
angular algorithms have been obtained either with the 
help of heuristic premises or empirical fitting based on 
real or model data. Moreover, although in the latter case 
they are called theoretical,7 there is no guarantee at all 
that the principal factors affecting the accuracy of the 
TOS determination have been correctly parameterized.  

Meanwhile, the possible number of the coefficients 
for every possible combinations of the spectral 
measurements and angle-dependent quantities may be 
quite large. For instance, about ten regression coefficients  

have been chosen in Ref. 7. For this reason, it is not 
always clear, if the obtained coefficients are optimal and 
how stable they are. A theoretically justified scheme for 
parameterizing the MCM, whose derivation and 
experimental investigation is the main purpose of this 
paper, must answer these questions.  

As an experimental results we use the AVHRR data 
obtained in the spectral regions near 3.7 and 10.8 μm, 
which were received in the ART regime (corresponding to 
the GAC format) from a NOAA-10 artificial earth 
satellite during the period from August to October, 1990 
carrying out the "Taifun–90" experiment over the 
Philippine sea. The regions and dates of the viewing, 
which are listed in Table II, were specially chosen with 
weak cloudiness and slight variability of the TOS (within 
the limits of one degree). The latter property makes it 
possible to ascribe an average ocean surface temperature 
T

0
, which was estimated based on the decade maps 

published by the Japanese Meteorological Agency and the 
shipborne meteorological observations, to all 
measurements of every region. For each turn of the 
satellite over the given region, histograms of radiative 
temperatures, incorporating swaths of nine viewing lines 
whose centers corresponded to the chosen zenith angles, 
were plotted; after that a threshold cutoff of the cloudy 
elements was performed. A survey corresponding to a 
definite period is a summation of such truncated 
histograms over several turns. For example, the 
summation was performed over 3 turns of the NOAA–10 
satellite during the first viewing period and over 21 turns 
during the second viewing period. Insofar as the employed 
method of cloudness filtration does not ensure its total 
ellimination (this is hardly possible at all8), as an average 
radiative temperature we took its noise–proof estimate, 
representing the 75 percentile of the sampling quantile 
function. In order to employ this estimate it is quite 
sufficient that there exists only a certain degree of 
uniformity of the sampling8 that was obtained by the 
truncation of histograms. An additional check of the 
degree of uniformity was based on the value of the 
difference between the 75 and 50 percentiles9 must be less 
than 1°C.  
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TABLE I. Results of calculations of the MCM parameters from radiosonde data using a LOWTRAN–5 model. 

 

Sonde characteristics  

secϑ 

 

τ
1
 

 

τ
2
 

 

T
–

a1 (°C)

 

T
–

a2 (°C)

 

δT
0
 (°C) 

 

γ
1
 

 

γ
2
 

October 17, 1990 (12GMT)  
22°22′ N 136°E 

1.24 0.68 0.29 16.1 17.6 –0.9 0.82 0.25 

October 18, 1990 (0GMT)  
19° N 137°E 

1.00 0.74 0.44 14.9 17.8 –1.4 0.89 0.28 

1.00 0.77 0.57 16.8 20.1 –1.6 1.13 0.39 October 20, 1990 (0GMT) 
15°47′ N 136°47′E 1.42 0.69 0.35 17.8 20.8 –1.8 0.91 0.29 

 

Note: T
–

ai is the average atmospheric temperature in the ith channel, δT
0
 is calculated from Eq. (1), γ

1
 is the spectral 

parameter of the linear theory of the MCM, and γ
2
 is that of the quadratic theory of the MCM.  

 
The choice of the dates and regions of viewing had 

an additional purpose to provide a wide presentation of 
both moderate and extreme atmospheric conditions 
observed in the tropics concerning their effect on the IR 
radiation of the ocean. Because these conditions are 
primarily determined by the water vapor density 
variations at an altitude of ∼2 km,10 its distribution was 
monitored based on data of temperature and moisture–
content sensing (with the use of radar). Thus survey 1 
corresponds to an extremely large concentration of water 
vapor (when the concentration becomes still higher, as a 
rule, thick cloudiness arose, which interfere with the IR 
measurements of the TOS). Survey 3 was carried out 
under conditions of extreme saturation deficit at altitudes 
of a large zone of air descent. Survey 2 corresponds to 
moderate conditions, which was provided by monthly 
averaging of the data.  

The fundamental value in the MCM theory has the 
assumption about a constancy, under given atmospheric 
conditions, of the mean air temperature1  
 

T–a = [1 – τi(p0
)]–1

⌡⌠
p
0

0

Ta(p)∂τi (p)/∂pdp , 

 
where Ta(p) is the vertical profile of the atmospheric 

temperature, p is the air pressure (p
0
 is the surface 

pressure), τi(p) is the IR–radiation transmission function 

of the atmosphere in the ith channel (in what follows, 
where there is no doubt, i = 1 corresponds to the spectral 
region near 3.7 and i = 2 to the spectral region near 
10.8 μm in the two–spectral algorithm; i = 1,2 
corresponds to two different zenith angles ϑ

1
 and ϑ

2
 in 

the two–angle algorithm). An estimate of the systematic 

error for δT
–

a = T
–

a1
 – T

–
a2

 ≠ 0 and τi= τi(p0
) (T

–
a1

 and T
–

a2
 

are the mean temperatures of the atmosphere in two 
measuring channels) can be obtained from the relation  
 

δT
0
 = δT

–
a(1 – τ

1
)(1 – τ

2
)/(τ

1
 – τ

2
) . (1) 

 
As one can see from the results of calculations (Table I) 
based on the data of aerological sensing of the atmosphere 
(the calculations were made in the Marine Hydrophysical 
Institute of the Academy of Sciences of the Ukrainian 
SSR), this error is quite large for the two-spectral  

method. Moreover, from the results of calculations from 
the sonde data obtained on November 20, 1990 one can 
obtain an estimate of δT

0
 for two–angle method. It 

equals 0.9° C in both channels.  
From the fact that there are angular and spectral 

dependences of T
–

a we can conclude about inadequacy of 

the linear approximation of the transmission function 
τi(p) in the MCM theory. A necessary refinement can be 

obtained by an expansion of τi(p) in the Taylor series in a 

small parameter (the absorption coefficient ki) directly in 

the IR–radiation transfer equation1 written, for the 
simplicity, in terms of the radiative temperatures  
 

Ti = T
0
 τi(p0

) + 
⌡⌠
p
0

0

Ta(p)∂τi(p)/∂p dp ;  

 
taking into account only the terms of the second order, we 
have  
 
T

0
 = Ti + Cki m + D(ki m)2 , (2) 

 
where m = secϑ, 
 

C = T
0
ω(p

0
) + 

⌡⌠
p
0

0

Ta(p)∂ω(p)/∂p dp , 

 

D = – 

⎣
⎢
⎡

⎦
⎥
⎤1/2T

0
ω(p

0
)2 + 

⌡⌠
p
0

0

Ta(p)ω(p)∂ω(p)/∂p dp  , 

 

and ω(p) is the water content of the atmosphere.  
In contrast to Ta, which contains the function τi(p), the 

new unknown quantities C and D are independent of the 
choice of the spectral interval and zenith angle. In order to 
determine them, however, at least three–channel 
measurements are needed. Employment of the three-angle 
method in practice11 is justified only for the error in the IR 
measurements of the order of 0.01 K (see Ref. 12), which is 
unreal. As regards the three–spectral solution, system (2) will 
prove to be very close to degeneration, and an inadequacy of 
specifying the quantities ki under these conditions will lead to 

large errors in determining T
0
. 
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TABLE II. Results of calculation of the parameters of the quadratic MCM from the surveys over the Philippine sea. 
 

  Radiative temperatures as  
functions of the path length 

 m = secϑ 

Angular coefficients  
Regression coefficients 

Survey 
No. 

Dates & latitudes,  
in situ average TOS 

ϑ  
deg. 

 
0 

 
45 

 
57 

 
63 

 
β

2
 (1.6)

 
β (γ

2
 =0.35) 

 
β 

 

γ– + 1 
 

Correla-
tion 

  m 1.0 1.4 1.8 2.2 β
1
 (1.6)     

 
1 

August 10–12, 1990 
15–25° N 29.5°C 

T
2
 22.5 21.0 19.0 17.5 –4.17  

–3.04 
 

–3.14 
 

1.28 
 

0.98 
  T

1
 25.5 24.0 23.0 21.5 –3.33     

 
2 

August 31–September 29, 1990 
20–25° N 28.3°C 

T
2
 22.5 21.0 20.0 19.0 –2.92  

–2.35 
 

–2.46 
 

1.37 
 

0.95 
  T

1
 25.0 23.5 23.0 22.0 –2.50     

 
 
3 

October 20–21, 1990 
10–20° N 28.8°C 

T
2
 23.5 23.0 21.5 20.5 –2.50  

–1.94 
 

–1.78 
 

1.39 
 

0.99 

  T
1
 26.0 25.5 24.5 23.5 –2.08     

 

Note. The parameters of the tilt βi(m) were estimated from the data obtained at the angles 0 and 63°(m = 1.0 and 2.2) and the 

regression was determined according to the formula  
 

x 
ΔT
m  + y 

T
0
 – T

2

m  , β
–
 = y

∧
 , γ

–
 = x

∧
 – 1 .  

 
Let us consider a combined scheme, in which C is 

determined by two–angle measurements while D–by 
two–spectral measurements. Let us differentiate the 
system of equations (2) with respect to m and introduce 
the angular coefficient βi(m) = ∂Ti(m)/∂m. We have 

Cki = –βi(m) – 2Dki
2
 m. By substituting this into 

Eqs. (2), we obtain T
0
 = Ti(m) – βi(m)m – D(ki m)2. 

Excluding D from the system for i = 1,2 we finally 
obtain  
 

T
0
 = T

1
(m) – β

1
(m) m + γ

2
[ΔT(m) – Δβ(m) m] , (3) 

 

where Δβ(m) = β
1
(m) – β

2
(m) and γ

2
 = k

1

2/(k
2

2 – k
1

2).  
The results of calculations given in Table I show that 

the quadratic parameter γ
2
 agrees better with the trend 

toward a decrease of the empirical values of γ in the 
algorithms, obtained by means of regression analysis of the 
experimental data: in the MCSST (see Ref. 2) γ = 0.5 and 
in the CPSST (see Ref. 6) γ = 0.40–0.45. Comparison of 

the regression estimate g– (Table II) and the model 
quantities (Table I) makes it possible to conclude that the 
fixed value γ

2
 = 0.35 can be used for further calculations.  

However, it is impossible to use Eq. (3) directly in 
order to determine T

0
, since in practice the measurement 

of βi (m) corresponds to the chord connecting Ti (m1
) and 

Ti (m2
) and refers to m which is equal to a half–sum of 

m
1
 and m

2
 (in our case m = 1.6). Meanwhile, the 

summary parameter  
 

β = β
1
(m) + γ

2
Δβ(m) (4) 

 
already becomes independent of the angle (the choice of 
γ
2
 balances the curvatures of the plots of Ti (m), which 

are proportional to ki
2). For this reason, a practical 

algorithm can have the form  
 

T
0
 = T

1
(m) + γ

2
ΔT(m) – βm , (5) 

 

in which the angular parameter β is constant for the given 
atmospheric conditions to an accuracy of the second order 
(the terms of the third order are estimated to be 0.1 K). An 
estimate of this parameter from Eq. (4) for m = 1.6 and by 
a regression analysis using in situ value of the T

0
 (see the 

note under Table II) yields close results. In this connection, 
one can conclude that the four–channel method (5) 
adequately describes the IR measurements of the TOS 
through the atmosphere for the current level of the 
instrumentation errors.  

It is desireable to consider a possibility for two-
channel reductions of this method. If the parameter β in 
Eq. (4) is assumed to be a universal constant (similar to 
γ
2
), a two–spectral algorithm with a fixed angle–

dependent term is obtained. This algorithm describes the 
principal part of all of the up–to–date spectral–angular 
algorithms4-7 and, for this reason, it permits one to 
estimate their accuracy. As can be seen from Table II, for 
the pair of spectral regions under consideration the 
variability of the parameter β under tropical conditions is 
estimated by the quantity 0.5–0.6. This means that, 
choosing a universal value of β = –2.5 (in the CPSST 
format6 β = –1.97, but with an account of the constant 
∼0.6°C we have the same resultant value), we obtain the 
error in determining the TOS under extreme conditions 
∼1.2°C for m = 2.2 and at the endpoints of the AVHRR 
viewing line (m = 2.7) it grows up to 1.5°C. (The CPSST 
algorithm based on the data of survey 1 for m = 2.2 has 
virtually yielded 28.0°C and 29.5°C for survey 3. In the 
former case we have an underestimation by 1.5°C and in 
the latter an overestimation by 0.7°C).  

Taking into account so unfavorable estimates of the 
two–spectral reduction accuracy (the estimates for the pair 
of the spectral regions near 10.8 and 12 μm are still worse, 
and this fact, in particular, gave rise to an attempt to 
introduce the term γΔTm instead of β m in Refs. 6 and 7), 
let us consider the method of quadratic extrapolation  
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T
0
 = T

1
 – β

1
′m – β

1
′′m2 , (6) 

 
which follows from Eq. (2) for β

1
′ = –Ck

1
 and β

1
′′ = –Dk

1

2. 

The spectral and angular parameterization of the IR 
measurements of the TOS (3) makes it possible to derive 
the following relations: β

1
′′m2 = γ

2
[ΔT(m) – Δβ(m) m] and 

β
1
′ = β

1
(m) – 2β

1
′′m. Table III presents the calculated 

parameters β
1
′′, from which it follows that it is quite 

acceptable to fix β
1
′′ = 0.29. Using this quantity and the 

calculated angular coefficients β
1
(m) (for m = 1.6) we 

will obtain the required value of the parameter β
1
′ for this 

method. Table III also gives the results of testing 
algorithm (6) on the viewing data over the Philippine sea 
with these values of the parameters. By way of a 
comparison, the errors of the four–channel algorithm (5) 
are also shown in the table; in this algorithm the 
measurements of angular coefficients corresponding to 
each viewing were taken as β (Table II). One can see that 
both algorithms based on the averaged data have 
approximately identical accuracy characteristics, and this 
confirms the critical role of angular measurements (or, at 
least, of an adaptation of the parameter β to the synoptic 
conditions) in order that the TOS be obtained to an 
accuracy higher than that currently available amounting 
to 0.7°C (see Ref. 6).  

 
TABLE III. Calculated parameters of the quadratic 
extrapolation method.  
 

Survey No. 
(Table II) 

ΔT  
(1.6) 

Δβ (1.6) β
1
′′ β

1
′ Algorithm errors

     Eq. (6) Eq. (5)
1 3.50 0.84 0.295 –4.26 0.0 0.1 
     (0.1) (0.2) 
2 2.75 0.42 0.284 –3.43 –0.2 –0.2 
     (0.2) (0.2) 
3 2.75 0.42 0.284 –3.00 0.1 0.1 
     (0.2) (0.1) 

 
Note. ΔT 1.6 corresponds to a half–sum of ΔT 1.4 and ΔT 
1.8; the errors of the algorithms with adjustable parameter 
β equal the bias (standard deviation) for each survey.  

 
An advantage of the more complicated algorithm (5) 

may be manifested in this case owing to a better  

reconstruction of the local anomalies of the water vapor 
distribution in the atmosphere using the term γ

2
ΔT. However, 

the principal advantage of the four–channel measurements of 
the TOS is in obtaining an additional information about water 
vapor, which is an urgent problem.10 Let us remind that the 
linear theory of the MCM admits only two–channel IR 
measurements, with the help of which the unknown 
instrumentational variable, i.e., the average temperature of the 

atmosphere T
–

a
, is excluded (but not determined). Meanwhile 

in the approach proposed the geophysical parameters C and D 
in Eq. (2), which can be determined using four measurements 
channels, carry this information.  

A more detailed insight into this problem as well as a 
treatment of other spectral regions and ways of using the 
angular measurements in practice must be the subjects of 
separate papers. In conclusion I express my gratitude to 
A.M. Ignatov for assistance in formulating the problem and 
discussions of the obtained results. 
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