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A solution of the problem of the optical beam transfer through a bounded 
medium is presented. Analytical formulas are derived for different experimental 
configurations with the light source and receiver being located at the boundaries of 
the medium, with the source being contained within the scattering volume while the 
receiver being located at its boundary or conversly, and with both the source and 
receiver being contained within the scattering volume. Theoretical results obtained in 
the paper agree well with experimental data thereby demonstrating the applicability 
of the exponential dependence of the radiation attenuation in the disperse media.  

 
INTRODUCTION  

 
In solving the scientific and applied problems of optical 

radiation transfer through the scattering media, we generally 
deal with the bounded scattering volumes and the radiation 
fluxes. The first run of theoretical and experimental studies 
made in this field in the 1960's (with the advent of laser 
radiation sources) has brought to light new regularities in the 
transfer of the narrow optical beams and has greatly 
contributed to the development of the approximate methods of 
calculation and to the qualitative interpretation of these 
regularities. However, up to date these and subsequent 
studies1,2 did not provide a comprehensive quantitative 
account of the finite dimensions of the optical beams and the 
scattering volumes. Therefore, it might be of interest to solve 
the problems of a narrow optical beam transfer through a 
bounded scattering volume using a new analytical method 
which we presented in Ref. 3 for calculating the radiation 
fluxes with an acceptable level of accuracy.  

A critical factor motivated us to employ a new method 
for solving the problem on propagation of a narrow beam 
through a bounded scattering medium is the transfer of a 
coherent fraction of radiation (direct radiation) of weakly–
divergent laser beams at unexpectedly–larger optical 
thicknesses than with wide beams.4,5 Unfortunately, the use of 
the empirical formula1,6 for estimating the optical thickness 
for which the contrast between the brightness of direct and 
scattered radiation vanishes for narrow laser beams is 
restricted by experimental conditions. The physical 
interpretation1,2,6 of this effect resulting from different 
brightnesses of multiply scattered radiation for narrow and 
wide optical beams propagating through the scattering media 
cannot be considered complete since the question of the role of 
different layers and shapes of the scattering volume remains 
unsolved. A new approach to the approximate solution of the 
radiative transfer equations with an account of boundary 
conditions for a medium and a beam seems to be promising for 
overcoming early existing difficulties in calculating and 
interpreting the results.  

In this paper the solution of the above–formulated 
problem is based on the fact that the transfer of optical 
radiation through the scattering media can be treated 
independently for the direct radiation and for the incoherent 
background of the scattered radiation. In this case the 
attenuation of the direct radiation is described by the Bouguer 
law while the intensity of the background scattered radiation 
at small optical depths can be calculated with sufficient  

accuracy within the framework of the theory of single 
scattering of radiation.  

Only at large optical depths the background 
multiscattered radiation can predominate and its level, in 
contrast to the level of the background singly scattered 
radiation, depends not only on the angular pattern of the 
receiving–transmiting system1 but also on the optical 
dimensions of the beam and the scattering volume.3  

It is expedient to separate out the single–scattered 
radiation intensity from a total one because of different ways 
of accounting for experimental conditions when calculations 
are made in single or multiple scattering approximations. 
Therefore the total intensity of the transmitted radiation I at 
any optical depth τ can be given in the form 
 
I = I0exp(– τ) + I0γτ exp(– τ) + I

m
 , (1) 

 

where the first component I0exp(–τ) describes the intensity 

of the direct radiation attenuated according the Bouguer 
law. The second component I0γτ exp(–τ) describes the 

singly–scattered radiation intensity, where the parameter γ 
is uniquely determined by the angular pattern of the 
receiving––transmitted system and by the scattering phase 
function in the forward direction. The third component Im 

describes the transmitted radiation intensity associated with 
the multiple scattering effects. We will try to calculate the 
third component for different experimental conditions using 
the approximate analytical method described in Ref. 3.  
 

CALCULATION OF MULTIPLY SCATTERED 

RADIATION INTENSITY TAKING THE POSITION  

OF THE SOURCE AND RECEIVER WITHIN  

THE SCATTERING VOLUME INTO ACCOUNT  

 
In calculating the fluxes of multiply scattered radiation 

in the bounded scattering volume it is necessary to take into 
account not only its transverse dimensions but also 
longitudinal ones which are outside the region lying between 
the plane of the optical beam entering the medium and the 
plane of radiation reception if the scattering volume is not 
bounded by the planes in which the radiation source or the 
receiver are located. The longitudinal dimensions of the 
scattering volume must be taken into account depending on 
the experimental configuration due to the fact that in the 
process of multiple scattering the fraction of radiation 
scattered outside the region lying between the source and the  
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receiver returns and contributes to the radiation flux recorded 
by the receiver. Thus, the intensity of multiply scattered 
radiation at the point of reception can be different depending 
on the experimental configuration.  

When solving the problem of the optical beam 
propagation through the bounded volume we will consider the 
following four experimental configurations: the source and the 
receiver are at the boundaries (longitudinal) of the scattering 
volume; the radiation source is contained within the scattering 
volume and the receiver is at its boundary; the radiation 
receiver is contained within the scattering volume and the 
source is at its boundary; and, the radiation source and the 
receiver are contained within the scattering volume. We will 
also assume that the illumination and receiving planes are 
perpendicular to the source–receiver axis and the scattering 
volume is taken as a parallelepiped with dimensions τy and τz.  

1. The source and the receiver are at the boundaries of 
the scattering volume. For this experimental configuration we 
can use the formulas for a one–dimensional case7 with the 
generalized (for a three–dimensional case) parameters K(τy, τz) 

and R(τy, τz) in the form3: 
 

A1 = 
(1 – R2)e–Kτ0

1 – R2e–2Kτ0
 ;  B1 = 

R(1 – e–2Kτ0)

1 – R2e–2Kτ0
 ; 

 

C1 = 
(1 – R)(1 – e–Kτ0)

1 + Re–Kτ0
 , (2) 

 

where Im1 = I0 A1 is the transmitted radiation intensity, I0 B1 

is the reflected radiation intensity, I0 C1 is the absorbed 

radiation intensity (comprising the radiation leaving the 
scattering volume), I0 is the intensity of radiation incident on 

the medium, and τ0 is the optical depth of the scattering layer 

lying between the source and the receiver (along the x axis).  
2. The radiation source is contained within the scattering 

volume. An additional layer of the scattering medium lying 
behind the radiation source results in increase of the 
background of the multiply scattered light entering the 
receiver. Let us denote the optical depth of the layer lying 
behind the source as τ1 and make use of the method of 

multiple reflections for calculating the value Im2 at the 

receiver.  
 

 
 

FIG. 1. A diagram for calculating the transmitted 
radiation intensity (in the plane of reception) for the 
experimental configuration with the source contained 
within a scattering volume.  
 

In the upper part of Fig. 1 a schematic configuration of 
the experiment for this case is shown; in the lower part of this 
figure – a diagram which can be deciphered as step–by–step  

accounting for the intensities of the radiation transmitted 
through and reflected from the boundaries of the individual 
scattering layers.  
 

After the radiation from the source with the intensity 
I0 = 1 (step 1) has entered the scattering volume of the optical 

depth (τ0 – τ1) the component of the intensity of radiation 

transmitted through the reception plane is A2 (step 2) while 

the component of the intensity of radiation reflected from the 
plane of the radiation source is B2 (step 3). But when the 

layer of the depth τ1 is irradiated by the intensity B2, the 

radiation with the intensity A1B2 (step 4) emanates the 

scattering layer of the depth τ1 and the reflected radiation 

with the intensity B1B2 (step 5) enters the scattering layer of 

the depth (τ0 – τ1). This reflected radiation after propagation 

through the layer (τ0 – τ1) makes an additional contribution 

to the intensity of the radiation transmitted through the 
reception plane being equal to A2B1B2 (step 6), and so on. 

Figure 1 also shows two more components of the intensity of 
radiation transmitted through the reception plane (steps 10 
and 14) after propagation through the layer and reflection 
from the opposite planes of the scattering volume (steps 7–13). 

Summing over all of the possible components of the 
intensity of radiation transmitted through the receiving plane, 
following the diagram of Fig. 1, we can write  
 

I
m2 = A2∑

n=0

∞

B
n

1B
n

2 = 
A2

1 – B1B2
 , (3) 

 

where the subscripts 1 and 2 stand for the components of 
the intensity of the transmitted A and reflected B radiation 
for the scattering layers of the depths τ1 and (τ0 – τ1), 

respectively. It follows from formula (2) that  
 

B1 = 
R(1 – e

–2Kτ1)

1 – R2e
–2Kτ1

 ,  A2 = 
(1 – R2) e

–K(τ0–τ1)

1 – R2 e
–2K(τ0–τ1)

 ,  

 

B2 = 
R (1 – e

–2K(τ0–τ1))

1 – R2 e
–2K(τ0–τ1)

 . (4) 

 

Substituting the values B1, A2, and B2 from Eq. (4) into 

Eq. (3) gives  
 

Im2 = I0 

(1 – R2 e
–2Kτ1) e

–K(τ0–τ1)

1 – R2 e
–2Kτ0

 , (5) 

 

where the parameters K(τy, τz) and R(τy, τz) take into 

account the dependences of the total intensity of the 
radiation Im2 transmitted through the receiving plane on the 

transverse dimensions of the scattering volume.  
3. The receiver is contained within the scattering volume. 

As for the previous configuration, we will consider one after 
another the intensity components of the transmitted and 
reflected radiation at the boundaries of the scattering layers 
bounded by the planes of the radiation source (a front wall of 
the scattering volume) and of the receiver and by the back 
wall of the scattering volume. The optical depth of the two 
layers identified in such a way is shown in the upper part of 
Fig. 2. The radiation with the intensity I0 = 1 (step 1) 

incident on the first layer of the optical depth (τ0 – τ2) results 

in the appearance of one of the intensity components of the 
reflected B1 (step 2) and of the transmitted A1 (step 3)  
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radiation in the receiving plane. After propagation of the 
radiation intensity A1 through the layer τ2, the radiation 

intensity A2 A1 (step 4) leaves the scattering volume and the 

radiation intensity B2 A1 (step 5), reflected from this layer, 

leaves the receiving plane.  
 

 
 

FIG. 2. A diagram for calculating the transmitted 
radiation intensity (in the plane of reception) for the 
experimental configuration with the source contained 
within a scattering volume.  
 

After propagation of the radiation intensity B2 A1 through 

the layer (τ0 – τ2), the radiation A
2
1B2 (step 6) leaves the 

scattering volume and the radiation intensity A1B1B2, 

reflected from this layer, leaves the receiving plane, and so 
on. Summing over all possible components of the intensity 
of the radiation transmitted through the receiving plane, 
according to the diagram of Fig. 2, we can write  
 

Im3 = A1 ∑
n = 0

∞

 B1
n B2

n = 
A1

1 – B1B2
 , (6) 

 

and after substituting A1, B1, and B2 determined from 

formulas (2) we obtain for the total intensity  
 

Im3 = I0 

e
–K(τ0–τ2) (1 – R2 e

–2Kτ2)

1 – R2 e
–2Kτ0

 , (7) 

 

where, in analogy with the previous case, the parameters 
K(τy, τz) and R(τy, τz) depend on the transverse dimensions 

of the scattering volume.  
4. The source and the receiver are contained within the 

scattering volume. To calculate the intensity of radiation 
transmitted from the source to the receiver with an account of 
multiple scattering for the given experimental configuration 
we may use one of the two above–described configurations. To 
this end, it is sufficient to separate out two scattering layers 
bounded by the front or the back walls of the scattering 
volume and by the plane of the receiver or the source, 
respectively. The subsequent discussions are similar to those 
given above, and the total intensity of the transmitted 
radiation in the receiving plane takes the form 
 

Im4 = I0 

(1 – R2e
–2Kτ1)(1 – R2e

–2Kτ2)e
–K(τ0–τ1–τ2)

(1 – R2) (1 – R2 e
–2Kτ0)

 , (8) 

 

where K(τy, τz) and R(τy, τz) depend, as previously, on the 

transverse optical dimensions of the scattering volume.  
Formula (8) is general, all previous relations follows 

from it as particular cases. Actually, if for the experimental 
configuration with the source or the receiver being  

contained within the scattering volume we assume τ2 = 0 or 

τ1 = 0, then formulas (5) and (7) follow from Eq. (8). If 

the source and the receiver are at the boundaries of the 
scattering volume, then τ1 = τ2 = 0 and from Eq. (2) the 

formula for A1 can be obtained from Eq. (8).  

 
CALCULATION OF THE INTENSITY OF MULTIPLY 

SCATTERED RADIATION TAKING THE DIMENSIONS 

OF THE OPTICAL BEAM INTO ACCOUNT  

 
The formulas in the above section were obtained for the 

case in which the transverse dimensions of the optical beam 
coincide with those of the scattering volume. Here we deal 
with a more general case in which the dimensions of the beam 
with the optical cross section Δ1 are smaller than transverse 

dimensions of the scattering volume. It follows from Eq. (1) 
that only the third component of the transmitted radiation 
intensity associated with the effects of multiple scattering 
depends on the relationship between the cross sections Δ1 and 

Δ2.  

In the first approximation we can assume that the 
intensity component Im associated with multiple scattering 

effects has a uniform distribution over the solid angle ω. It is 
the case at large optical depths6 while at small optical depths 
the contribution of multiply scattered radiation to the total 
intensity of the transmitted radiation is negligible. In such an 
approximation Im can be considered to comprise two 

components.  
One of the components determines the fraction of the 

intensity of multiply scattered radiation which is formed 
within the region occupied by the beam and, according to 
formula (2) for the first experimental configuration is equal to 
 

Im′ 1 = I0 

ω

2π
 d1 ,  

 

d1 = 
(1 – R1

2) e
–K1τ0

1 – R1
2 e

–2K1τ0
 – (1 + γτ0) e

–τ0 . (9) 

 

Here the subscript adjacent to K1 and the subscript 

adjacent to R1 indicate the calculation to be made for a 

medium whose optical transverse dimensions are equal to 
the diameter of the beam.  

The second component describes the multiply scattered 
background radiation formed outside the region occupied by 
the beam and represents the response of those part of the 
medium which is not illuminated by the direct beam. It is 
given by the formula  
 

Ims = I0 

ω

2π
 ν(d1′ – d1) ,  

 

d1′ = 
(1 – R2

2) e
–K2τ0

1 – R2
2 e

–2K2τ0
 – (1 + γτ0) e

–τ0 , (10) 

 

where the subscript adjacent to K2 and the subscript adjacent 

to R2 indicate the calculation to be made for the entire 

medium and the factor ν depending on the optical parameters 
of the medium and the experimental configuration takes into 
account different density of radiation flux outside the region 
occupied by the beam.  

Thus, in the first approximation the total value Im1 is 

given by the formula  
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Im1 = Im′ 1 + Ims = I0 

ω

2π
 [d1 + ν (d1′ – d1)] . (11) 

 

Likewise, the values of Imi are calculated for all experimental 

confugurations including the most typical configuration in 
which the source and the receiver are contained within the 
medium. For the fourth experimental configuration the 
calculation of Im4, after taking the introduced factor ν and 

Eq. (8) into account, gives the formula 
 

Im4 = I0 

ω

2π
 [d1 + ν (d4′ – d4)] ,  

 

d4 = 
(1 – R1

2 e
–2K1τ1) (1 – R1

2 e
–2K1τ2) e

–K1(τ0–τ1–τ2)

(1 – R1
2) (1 – R1

2 e
–2K1τ0)

 –  

 

– [1 + γ(τ0 – τ1 – τ2)] e
–(τ0–τ1–τ2)

 , (12) 
 

d4′ = 
(1 – R2

2e
–2K2τ1) (1 – R2

2e
–2K2τ2) e

–K2(τ0–τ1–τ2)

(1 – R2
2) (1 – R2

2 e
–2K2τ0)

 –  

 

– [1 + γ(τ0 – τ1 – τ2)] e
–(τ0–τ1–τ2)

 .  
 

Figure 3 shows the calculated results for the two 
components of multiply scattered radiation intensity Imi, 

i.e., I ′ mi and Ims based on the above–derived formulas. It 

was assumed in calculations that the optical cross section of 
the beam Δ1 = 4.  

 

 
 

FIG. 3. Relative increase in the fraction of multiply 
scattered light as a function of the optical depth of the layer 
behind the source (the source is contained within the 
scattering volume): 1) τ0 = 5, 2) τ0 = 10, 3) τ0 = 20, and  

4) τ0 = 50.  

 
It can be seen from Fig. 3 that with increase of the 

optical depth τ the effect of the intensity component associated 
with the response of the medium becomes stronger and 
comparable with the effect of the component associated with 
multiple scattering inside the region occupied by the beam.  
 

CONCLUSION  
 

Our results provide a more comprehensive interpretation 
of the effect of multiply scattered background radiation on the 
brightness contrast of laser sources observed through the 
scattering medium. In particular, it is evident from the above–
calculated data (Fig. 3) that the level of multiply scattered 
background radiation formed by the scattering volume lying 
outside the volume directly illuminated by the optical beam 
plays an important role at large optical depths. Therefore, the  

threshold optical depth τth at which the brightness contrast of 

the observed radiation source (the difference between the 
intensities of direct and scattered radiations) vanishes depends 
not only on geometric dimensions of the optical beam and 
scattering properties of the medium but also on the overall 
dimensions of the scattering volume. This is a new and 
principal aspect in interpreting the dependences of τth on the 

medium properties and the geometry of the experiment.  
Figure 4 shows the results of estimating the applicability 

limits of the exponential dependence of attenuation on the 
parameter of a scattering medium ρ for different angular 
apertures of the radiation receiver ω. The angular divergence 
of the beam was taken to be 6′.  

 

 
 

FIG. 4. Applicability limits of the exponential dependence 
of attenuation vs the parameter ρ and the receiving 
aperture: 1) ω = 0.1 , 2) ω = 0.5 , 3) ω = 2, and 4) ω = 10°. 
 

It can be seen from Fig. 4 that the strongest 
dependence on the scattering phase function takes place for 
ρ < 2. When ρ > 2 the ρ–dependence of τth is close to the 

linear one. Such a dependence is supported by a number of 
experimental data based on which an empirical formula for 
τth in the scattering medium has been written1 

 

τth = – 5 lg(σd) + b , 
 

where d is the diameter of the beam and b is the empirical 
parameter. The filled circles in Fig. 4 denote the experimental 
data obtained in Refs. 1–6. Satisfactory agreement between 
the curves calculated from our formulas and experimental data 
is indicative of the fact that in many cases the nonuniformity 
in the distribution of multiply scattered radiation intensity Im 

can be neglected. We hope that in future the more detailed 
studies will allow us to identify the cases in which the 
adjustment factor ν must be introduced.  

So, the simplest case of normal illumination of the 
scattering volume with a narrow beam has been treated in the 
present paper. The problems of inclined illumination have not 
yet been considered because of the cumbersome formulas being 
derived in this case. But it is the inclined illumination that 
provides the solution of the problem of optical radiation 
transfer through the spherical atmosphere and therefore it is of 
definite interest. The calculated results for this case and some 
other problems must be considered separately.  
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