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Algorithm for calculating the fluxes of radiation propagated through the 
scattering medium has been presented. The comparison with data obtained by the 
Monte Carlo method has been made.  

 
The main methods for calculating the radiation fluxes 

in bounded media are numerical ones and require computers 
and much computation time.1 At the same time, the solution 
of a number of applied problems calls for the development 
of efficient analytical methods. Now a number of methods 
has been developed, e.g., the FA method,2 the multiple 
reflection method (MRM),3,4 and the modified δ–Eddington 
method.5 Since this problem is of great interest, the 
algorithm for one of the above-mentioned methods, namely, 
the MRM is discussed below as well as some computational 
results obtained by this method.  

The accuracy of the calculation of radiative transfer 
characteristics depends on a number of important factors 
one of which is the approximation of a real scattering phase 
function.1 When developing the analytical methods one of 
the most generally applicable ways of approximation is the 
parameterization of a volume scattering phase function via 
the integral parameters. The choice of specific 
representation of the scattering phase function strongly 
affects the calculational accuracy. By way of example we 
may point out Ref. 6.  

The radiative transfer problem is solved here for a 
bounded disperse medium. The general methodology was 
described in detail in Ref. 4. Let us assume the model of a 
scattering medium in the form of a rectangular 
parallelepiped and choose the Cartesian coordinates in such 
a way that its origin coincides with one of the 
parallelepiped vertices and its axes are directed along the 
parallelepiped edges. Let us now specify the optical 
dimensions of the volume as τ

x0, τy0, and τz0. The scattering 

phase function χ(θ) is represented via the six integral 
parameters with the normalization condition  
 

γ + β + ∑
i=1

4

 μi = 1 , (1) 

 
where η, β, and μ characterize the scattering in the 
directions ± x, ± y, and ± z and θ is the scattering angle. 
The way of determining the integral parameters has been 
described in Refs. 3 and 4. When the scattering phase 
function is axisymmetric this representation is analogous to 
Ref. 7. Absorption is taken into account by means of the 
photon survival probability Λ.  

Let a parallel flux of monochromatic radiation with 
the intensity I

0 = 1 be incident on one of the side 

boundaries of the volume in the direction + x. In this case, 
following Ref. 4, the fluxes I1(τ, Λ, θ), I2(τ, Λ, θ), and 

I3(τ, Λ, θ) leaving the bounded medium in the direction  

along the ± x, ± y, and ± z axes and the absorbed flux 
I
Λ
(τ, Λ, θ) are given by the relations 

 

I1(τ, Λ, θ)= 

[1 – R2(τy, τz, Λ, θ)] exp[ – K(τy, τz, Λ, θ) τx0
]

1 – R2(τy, τz, Λ, θ) exp[ – 2K(τy, τz, Λ, θ) τx0
]
 ; 

 

I2(τ, Λ, θ)= 

{1 – exp[– 2K(τy, τz, Λ, θ) τx0
]} R(τy, τz, Λ, θ)

1 – R2(τy, τz, Λ, θ) exp[ – 2K(τy, τz, Λ, θ)τx0
]

;(2) 

 

I3(τ, Λ, θ) = Is(τ, Λ, θ) + I
K
(τ, Λ, θ) = 

 

= 

[1 – R(τy, τz, Λ, θ)] {1 – exp[–K(τy, τz, Λ, θ) τx0
]}

1 + R(τy, τz, Λ, θ) exp[–K(τy, τz, Λ, θ) τx0
]

 ,  

 

where the variable coefficients K(τy, τz, Λ, θ) and 

R(τy, τz, Λ, θ) take the following form: 
 

K(τy, τz, Λ, θ) = P(τy, τz, Λ, θ)[1 – Λ(η – β)] ; 
 

R(τy, τz, Λ, θ) = 
K(τ

y, τz, Λ, θ) – P(τy, τz, Λ, θ)

K(τ
y, τz, Λ, θ) + P(τy, τz, Λ, θ)

 , (3) 

 

and the function P(τy, τz, Λ, θ) determines the scattering 

along the x axis.  
Let us consider in detail the algorithm for solving the 

problem of radiative transfer. It should be emphasized that 
this analytical approach allows the solution to be obtained for 
a medium of arbitrary configuration with the scattering phase 
function anisotropic in all directions. To simplify the 
derivations it is expedient to introduce simplifications usually 
employed in the scattering theory: τ

y0
 = τz0

 = τc and an 

axisymmetric scattering phase function μ
i = μ, i = 1, 2, 3, 4. 

Then the function P(τc, Λ, θ) is given by the formula  
 

P(τc, Λ, θ) = P0(Λ, θ) – 4μ [2μΛ + P0(Λ, θ) – 
 

– P1(τc, Λ, θ)] F1(τc, Λ, θ)/P1(τc, Λ, θ) , (4) 
 

where  
 

P0(Λ, θ) = 1 – Λ(η + β) ; (5) 
 

P1(τc, Λ, θ) = P0(Λ, θ) – 4μ2ΛF0(τc, Λ, θ)/P0(Λ, θ) ; (6) 
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F
0(τc, Λ, θ) = 1 – 

[R0(Λ, θ) + 1]{1 – exp[– K(Λ, θ) τc]}

K0(Λ, θ) τc{1 + R0(Λ, θ) exp[– K0(Λ, θ) τc]}
. 

 

  (7) 
 

The coefficients K0(Λ, θ) and R0(Λ, θ) are calculated from 

formulas (3) in which P(τc, Λ, θ) is replaced by P(Λ, θ). 

The function F1(τc, Λ, θ) is calculated in analogy with 

Eq. (7) with K0(Λ, θ) and R0(Λ, θ) replaced by K1(τc, Λ, θ) 

and R1(τc, Λ, θ). The values K1(τc, Λ, θ) and R0(τc, Λ, θ) 

are calculated from formula (3) with P1(τc, Λ, θ) in place of 

P(τc, Λ, θ). The absorbed energy is found from the formula  
 

I
K
(τ, Λ, θ) = I3(τ, Λ, θ)(1 – Λ){η + β + 4μ × 

 

× [1 – 2μ + 2μF0(τc, Λ, θ)/P0(Λ, θ)] × 
 

× F1(τc, Λ, θ)}/P(τc, Λ, θ) . (8) 
 

This algorithm makes it possible quite accurately to 
determine the fluxes of radiaton propagating through the 
bounded scattering volume. The results of calculations of the 
radiation fluxes for the conservative medium in the form of a 
cube with the scatting phase function for cloud C

1 (Ref. 8) are 

shown in Fig. 1 (in this case η = 0.8475, β = 0.0115, and 
μ = 0.03525). Depicted in this figure are also the data 
obtained by the Monte Carlo method under the same 
conditions.2 

 

 
 

FIG. 1. The values of the transmitted, reflected, and exited 
radiation fluxes through the side boundaries as functions of 
optical dimensions of the medium: 1) I1(τ, Λ, θ),  

2) I2(τ, Λ, θ), and 3) I3(τ, Λ, θ). The solid curves show the 

results of calculations from Eq. (2) and the dashed curves 
show the results of calculations by the Monte Carlo method.  
 

The choice of such a model of scattering medium allows us 
to show in the same plot the dependences of the values of 
radiation fluxes on the optical depth for a wide range of  

both longitudinal and transverse optical dimensions of the 
medium. The comparison of the results shows that with 
increase of τ the calculational accuracy becomes higher.  

Figure 2 shows the results obtained for the absorbing 
medium as a plot of I

2(τ, Λ, θ) vs the optical dimensions for 

different values of the photon survival probability Λ. We 
can conclude based on the satisfactory agreement with the 
exact data2 that in our analytical method the absorption has 
been accounted for sufficiently correctly.  

 

 
 

FIG 2. The values of the reflected radiation fluxes as 
functions of optical dimensions of the medium: 
1) Λ = 0.999, 2) Λ = 0.99, and 3) Λ = 0.9, τx0 = 200. The 

solid curves show the results of calculations from Eq. (2) 
and the dashed curves show the results of calculations by 
the Monte Carlo method.  

 
It should be noted in conclusion that not all of the 

available methods provide a correct comparison of the 
radiation fluxes transmitted through the bounded scattering 
medium since the results depend strongly on the 
configuration of this medium.  
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