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A new method of restoration of the image from its convolution with an unknown 
pulse response based on solving the phase problem has been proposed. Its efficiency has 
been shown. Results of numerical simulation have been presented.  

 
The problem of restoration of the images of an 

object is important in different fields of applied physics. 
As a rule, the recorded image J(x) is a convolution of the 
true image O(x) with the pulse response H(x) of the 
imaging system  
 

J(x) = ⌡⌠O(x′) H(x – x′)dx′ . (1) 

 
Thus, the problem of restoration of the image is 

equivalent to the problem of solving the convolution 
equation.  

The widespread methods of restoration are based on 
using the a priori data on the image O(x) or on the pulse 
response H(x) or on an averaging over a great number of 
copies of the recorded images when the initial image O(x) 
is the same and the pulse response H(x) varies randomly.1 
Along with the foregoing, an investigation of the possible 
ways of restoration of the true image directly from the 
recorded one is of particular interest. A number of such 
restoration methods are well known.2,3 However, they are 
very sensitive to noise and require an accurate assignment 
of the image dimensions and the pulse response.  

The proposed method of restoration of the image is 
based on solving the phase problem, which essentially 
reduces to the reconstruction of the spatially bounded 
function based on the modules of its spatial spectrum.  

Performing a two–dimensional Fourier transform of 
the convolution equation (1), we obtain  

 

J
~
(f) = O

~
(f) H

~
(f) , (2) 

 

where J
~
(f) is the spatial spectrum of the recorded image, 

O
~

(f) is the spatial spectrum of the true image, and H
~

(f) 
is the optical transfer function.  

It is well known4 that the two–dimensional problem 
of reconstruction of the phase of the finite function 
spectrum based on its modules can be solved, as a rule, 
uniquely. At the same time, in the given particular case, 

when the spatial spectrum of the recorded image J
~
(f) is 

the product of the two functions O
~
(f) and H

~
(f), one can 

reconstruct four possible spectra J
~
(f), J

~
*(f), O

~
*(f) H

~
(f), 

and O
~

(f) H
~

*(f) based on the modules ⏐J
~
(f)⏐ of the 

recorded spectra. In addition, the images, which 
correspond to the first and second spectra, and likewise to 
the third and fourth spectra, will differ only in rotation 
by an angle of 180°.  

Thus, using the well–known iterative algorithms for 
reconstructing the finite function spectrum based on its  

modules, we can reconstruct the function O
~

*(f)H
~

(f) or its 

complex conjugate based on the modules ⏐J
~
(f)⏐. Without 

limitation of the generality, we shall assume that the 

function O
~
*(f)H

~
(f) has been obtained. A ratio of the 

spatial spectrum of the recorded image to the 
reconstructed function can be written as 
 

J
~
(f)

O
~
*(f)H

~
(f)

 = exp[i 2argO
~
(f)] . (3) 

 
Taking the logarithm of Eq. (3) we separate out the 

doubled phase of the spatial of the spectrum true image, 
from which it is easy to obtain the tangent of the phase 
and to determine the phase by itself of the spatial 
spectrum of the image to an accuracy of π.  

Restoration of an image based on the phase or the 
tangent of the phase of its spatial spectrum is a simpler 
problem than the solution of the phase problem. The 
appropriate iterative algorithms of reconstruction 
converge rapidly and are stable enough with respect to 
the noise.5,6  

It should be noted that in the case in which the 
pulse response of the imaging system is a centrally 
symmetric function, the data on the phase of the spatial 
spectrum of the true image can be retrieved directly from 
the spatial spectrum of the recorded image.  

We have performed a computer simulation of the 
proposed method of restoration of the image. In so doing, 

in order to retrieve the function O
~

*(f) H
~

(f), we used a 
well–known iterative algorithm for reconstruction of the 
spatial spectrum of the finite function based on its 
modules, which employs shaking up, i.e., relaxation.7 To 
restore the true image based on the tangent of the phase 
of its spatial spectrum, we made use of an iterative 
algorithm which was proposed by Oppenheim and Lim.6 

In the course of simulation, we realized a pulse response 
corresponding to a multiple image motion.  

The results of simulation have shown that in order 

to retrieve the function O
~

*(f) H
~

(f) with an error of 10% 
it is sufficient, as a rule, 50–100 iterations; in this case, 
the optimum relaxation coefficient lies in the range  
0.4–0.6. Restoration of the image itself does require 30–
40 iterations. In so doing, the relative rms error of the 
image is about 15%. Figure 1 shows the results of 
numerical simulation for illustration. Our investigations 
have shown that this method of restoration is 
insufficiently noise–proof. Already when the signal–to–
noise ratio is equal to 15–20, it does not yield a fair 
estimate of the image.  
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FIG. 1. The results of simulation: the distorted image (a), the image being restored after 30 iterations (b),  
and the true image (c). 
 

Thus, a principal feasibility of the proposed method of 
restoration has been established. However, its applicability in 
practice is substantially hindered by unavoidable noise of the 
imaging system.  
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